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Abstract
Background: The study of the seasonal variation of disease is receiving increasing attention from
health researchers. Available statistical tests for seasonality typically indicate the presence or
absence of statistically significant seasonality but do not provide a meaningful measure of its
strength.

Methods: We propose the coefficient of determination of the autoregressive regression model

fitted to the data ( ) as a measure for quantifying the strength of the seasonality. The

performance of the proposed statistic is assessed through a simulation study and using two data
sets known to demonstrate statistically significant seasonality: atrial fibrillation and asthma
hospitalizations in Ontario, Canada.

Results: The simulation results showed the power of the  in adequately quantifying the
strength of the seasonality of the simulated observations for all models. In the atrial fibrillation and
asthma datasets, while the statistical tests such as Bartlett's Kolmogorov-Smirnov (BKS) and

Fisher's Kappa support statistical evidence of seasonality for both, the  quantifies the

strength of that seasonality. Corroborating the visual evidence that asthma is more conspicuously

seasonal than atrial fibrillation, the calculated  for atrial fibrillation indicates a weak to

moderate seasonality (  = 0.44, 0.28 and 0.45 for both genders, males and females

respectively), whereas for asthma, it indicates a strong seasonality (  = 0.82, 0.78 and 0.82

for both genders, male and female respectively).

Conclusions: For the purposes of health services research, evidence of the statistical presence of
seasonality is insufficient to determine the etiologic, clinical and policy relevance of findings.
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Measurement of the strength of the seasonal effect, as can be determined using the 

technique, is also important in order to provide a robust sense of seasonality.

Background
Seasonality is an important component of disease mani-
festation. The presence of predictable seasonality is a clue
to the possible etiology of disease, be it from microbial,
environmental or social factors. Understanding seasonal-
ity is also essential for setting rational policy, particularly
with respect to the planning for seasonal demands for
health services.

For studying seasonality, several statistical methods are
available ranging from simple graphical techniques to
more advanced statistical methods. Additionally, autocor-
relation functions can be examined to assess regularity of
periodicity or seasonality. Several statistical tests have
been introduced for studying the cyclical variation of time
series data. For example, Edwards [1] developed a statisti-
cal test that locates weights corresponding to the number
of observed cases for each month at 12 equally spaced
points on a circle. The test is said to be significant if the
calculated centre of the mass significantly deviates from
the circle's centre. Jones et al [2] developed a test for deter-
mining whether incidence data for two or more groups
have the same seasonal pattern. Further, Marrero [3] com-
pared the performance of several tests for seasonality by
simulation, which can be used as a guideline for selecting
appropriate tests for a given data set based on the size of
the data set and the shape of the sinusoidal curve. To
apply any of these tests, however, observations must be
aggregated into 12 monthly data points.

Several alternative tests, which do not require aggregated
data, have also been developed. These include Fisher's
Kappa (FK), which tests whether the largest periodogram
is statistically different from the mean of periodograms;
Bartlett's Kolmogorov-Smirnov (BKS) test, which statisti-
cally compares the normalized cumulative periodogram
with the cumulative distribution function of a uniform
zero and one random variable; and the X-11 procedure as
used by the census bureaus in the United States and Can-
ada [2,4-11]. These tests utilize the frequency and time
domain to detect seasonality. Each test provides an indi-
cation of the presence or absence of statistical significance
of seasonality, however, they do not provide a sense of the
magnitude of seasonality or how much variance is
explained by seasonal occurrence in the data. This is par-
ticularly important in health care, as the presence of statis-
tically significant seasonality may not translate into either
etiologic or policy relevance.

In an effort to address the shortcomings in existing statis-
tical methods, we propose the application of autoregres-
sive regression models as a means for assessing the degree
of accuracy to which a new observation can be predicted
by stable (seasonal factors are constant over time) sea-
sonal variation and use it for quantifying the strength of
the seasonality within a set of serially correlated observa-
tions. In classical regression analysis the coefficient of
determination, R2, is a standard statistical tool for estimat-
ing the proportion of total variation of the dependent var-
iable, which can be explained by explanatory variables. A
crucial point in standard regression is that observations
are independent of one another. However, time series
observations can be serially autocorrelated and this corre-
lation must be taken into account.

Autoregressive regression models are a natural generaliza-
tion of standard regression models for analyzing corre-
lated data. For monthly data, one can use dummy
variables for months in a regression model as a single pre-
dictor, and then, after correcting for the autocorrelation,

calculate the coefficient of determination, . When
the time series is stationary and the trend is eliminated,
the statistical significance of the dummy variables
(months) indicates seasonality. The relationship between
the stable seasonal factors and the estimates of the regres-
sion equation parameters are as follows: suppose there are
k years monthly, n = 12 k, trend removed and centred

(mean deleted) observations. Let , i = 1,2,...,12 denote

the monthly average. The monthly averages, s, can be
interpreted as crude estimates of stable seasonal factors,
therefore, the range of parameter estimates is a good esti-
mate of the magnitude of seasonal variation. For estimat-

ing  one defines 11 dummy variables mi = 1 if
month equals i, mi = 0 otherwise and then regress mis on
yts. It is not difficult to show the ordinary least squared
estimates of the parameters of the regression equation

 are  and

. In practice  and parameters βis are esti-

mated simultaneously, therefore, the estimated parame-

ters s can be used as seasonal factor estimates.
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The coefficient of determination, which lies between 0
and 1, can be used as a measure for the strength of the sta-
ble seasonality because it measures how well the next
value can be predicted using month as the only predictor.

When  is zero, there is no seasonality. When

 is equal to 1, observations can be perfectly pre-
dicted for each month, which means that the variable
month explains 100% of the variation in the data. In other
words, there is a perfect seasonality. In practice we may
characterize the strength of the seasonality based on dif-

ferent ranges of values for . Similar to other meas-
ures of correlation or goodness of fit, we can interpret

 as follows: values ranging from 0 to less than 0.4
may be characterized as non-existent to weak seasonality,
0.4 to less than 0.7 represent moderate to strong seasonal-
ity, and values ranging from 0.7 to 1 represent strong to
perfect seasonality. The coefficient of determination,

, does not quantify the magnitude of the seasonal
effect (the difference between peak and trough, which can
be estimated by the difference between maximum and
minimum parameter estimates of the regression equa-
tion) but rather it quantifies its strength (i.e., how well
new observations can be predicted when month is the
only predictor).

The purpose of this paper is to evaluate the utility of R-
squared autoregression in explaining variance in assessing
stable seasonality. To this end, we have examined the per-
formance of the R-squared autoregression through a sim-
ulation study and using two data sets known to
demonstrate statistically significant weak and strong sea-
sonality: monthly hospitalizations for atrial fibrillation
and asthma.

Methods
Statistical methods
The autoregressive linear regression model for monthly
observations is defined as:

Yt = Xt β + εt

εt = -φ1εt-1 - φ2εt-2 - … - φp εt-p + et

et ~ N (0, )

where Yt is the observed time series, Xt is the design matrix
(a k × 12 matrix of 0 and 1), β = (µ, β1, …, β11)' is the vec-
tor of parameters, εt is the error term that follows an
autoregressive model of order p. Also, we assume that et is
normally and independently distributed with mean zero

and variance [12]. Standard statistical packages (e.g.
SAS) can be used for estimating the parameters and the

coefficient of determination, , after adjusting for

correlated error terms.

Simulation
In order to assess the performance of the proposed

 for measuring the strength of the seasonality of a
time series, a simulation study was conducted. Following
this, the proposed technique was applied to two real data
sets. The SAS software, version 8.2 (SAS Institute Inc. Cary,
North Carolina) is used for simulating monthly observa-

tions and calculating .

We simulated 1000 replications of monthly observations
over 10 years from the following model:

and calculated the  for each replication. By chang-
ing α, φ1, φ2, and φ12 the coefficients, this model generates
observations with a cyclical trend component of period
12, observations from a seasonal ARMA model with a sea-
sonal period of 12, and a combination of both. By chang-
ing the coefficients of the model we can generate pure
white noise to highly correlated data with seasonal pat-
terns. For example, a model with φ1 = φ2 = φ12 = 0 generates
a series of observations, which is a mixture of white noise
plus a cyclical trend. The size of α controls the contribu-
tion of the seasonal trend in the generated observations.
Parameters φ1 and φ2 control the correlation structure of
the simulated data. When φ1 = 0.9, for example, highly
correlated observations are generated. When parameter
φ12 is nonzero, the model generates observations with a
stochastic seasonal component. Similarly, nonzero φ12
combined with nonzero φ1 or φ2 generates a series with a
stochastic seasonal component which is correlated with
the non-seasonal components. When all parameters are
nonzero the generated observations have a complex struc-
ture which depends on a cyclical trend, a stochastic sea-
sonal component, and its correlation structure. In our
simulation, we set the order of the error terms in the
autoregression model to 2 (for all simulated observa-
tions). The mean and standard deviation of 1000 calcu-
lated  procedures are given in Table 1.

When α and φ12 are zero,  indicates no significant
seasonality even for highly correlated data (e.g. φ1 = -0.9).

The calculated  increases as α increases regardless
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of the sign and magnitude of the other parameters. When

α is zero (there is no cyclical trend), the  increases
in all cases as φ12 increases. This demonstrates the ability

and usefulness of  in quantifying the strength of
the seasonality in time series data.

To investigate the linkages between the  and p, the

order of the autoregression model, we repeated the simu-
lation experiments with p = 1,2,4,8, and 13. Also an addi-
tional simulation experiment using the stepwise
autoregression method was conducted to select the order
of the autoregressive error model whereby the maximum
possible autoregressive order was set equal to 13. The
stepwise autoregression method involves fitting a high
order model and then sequentially removing parameters
until all remaining autoregressive parameters remain sta-
tistically significant [13]. For the fixed order, p, simulation

results (not shown here) showed that  is robust to

over-fitting the data and p does not significantly affect the

estimated . Results from the stepwise experiments
showed that relative to fixed orders, p, there were no sig-

nificant differences in the . Results were, however,
slightly more conservative using the stepwise method.

In order to apply the autoregression procedure to actual
data it is important to eliminate the nonstationarity in the
mean and variance of the observations. For the data used
in the study the Dickey-Fuller unit root test [14] is used to
test the stationarity of the series and determine the order
of differencing required for the nonstationary series. The
SAS procedure, AUTOREG, was used for calculating

. In all cases p, the order of the autoregressive
model for error terms was selected using the stepwise
autoregression method. The maximum possible order was
set equal to 13.

Data Sources
The data were derived from two retrospective, population-
based, cross-sectional time series studies assessing tempo-
ral patterns in all discharge separations for asthma (from
April 1, 1988 to March 31, 2000) and atrial fibrillation
(from April 1, 1988 to March 31, 2001) for the popula-
tion of Ontario. Approximately 14 million residents of
Ontario, Canada eligible for universal health care cover-
age during this time were included for analysis. The data-
base used was the Canadian Institute for Health
Information (CIHI) Discharge Abstract Database which
records discharges from all Ontario acute care hospitals.
All records with a most responsible discharge diagnosis of
atrial fibrillation (ICD-9 code: 427.3) and asthma (ICD-9
code: 493) were selected. The numerator consisted of the
total number of discharge separations for each month.
Denominators were constructed from annual census data
provided by Statistics Canada for each age group for
residents of Ontario. Monthly population estimates were
created through linear interpolation.

Results
Atrial fibrillation
Overall, there were 90,199 (45,477 female and 44,472
male) discharge separations for all ages. Figure 1 shows
the monthly rates of admission per 100,000 population.
There is a conspicuous upward trend in admissions over
the first four years (Figure 1). Visual inspection does not
support conspicuous seasonality.

Table 1: Simulation results

Parameters
(Std)

φ1 φ2 φ12 α = 0 α = 1 α = 2 α = 4

0 0 0 0.099 (0.041) 0.400 (0.070) 0.703 (0.051) 0.902 (0.020)
0.5 0 0 0.098 (0.040) 0.409 (0.070) 0.712 (0.049) 0.906 (0.019)
-0.9 0 0 0.103 (0.042) 0.396 (0.069) 0.698 (0.050) 0.899 (0.020)
0.5 -0.8 0 0.098 (0.039) 0.393 (0.065) 0.699 (0.044) 0.899 (0.017)
0 0 0.5 0.256 (0.088) 0.703 (0.064) 0.896 (0.026) 0.971 (0.007)
0 0 0.7 0.410 (0.114) 0.847 (0.043) 0.953 (0.014) 0.988 (0.004)
0 0 0.9 0.716 (0.101) 0.974 (0.009) 0.993 (0.002) 0.998 (0.001)
0.3 -0.2 0.3 0.171 (0.066) 0.602 (0.072) 0.847 (0.034) 0.957 (0.011)
0.3 -0.2 0.5 0.260 (0.095) 0.764 (0.060) 0.924 (0.021) 0.980 (0.006)
0.3 -0.2 0.7 0.470 (0.149) 0.934 (0.024) 0.982 (0.006) 0.995 (0.002)
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However, after applying first order differencing, the
Dicky-Fuller test confirmed the stationarity of the differ-
enced series. After differencing the series, the data does
not show strong evidence of statistically significant sea-
sonality. Bartlett's Kolmogorov-Smirnov Statistic (BKS)
for both genders, females and males are 0.327, 0.308,
0,315 with p-values all less than 0.0001. The Fisher's
Kappa (FK) test statistics are 7.17 (0.01 < p-value < 0.05),
5.78 (not significant), and 7.98 (0.01 < p-value < 0.05).
The calculated  for both genders, females, and
males are 0.44, 0.28, and 0.45, respectively. The difference
between maximum and minimum months parameter
estimates are 2.79, 1.87, 3.85 for both genders, females
and males respectively which can be interpreted directly as

the difference in hospitalizations per 100,000 population
between peak and trough months in one year. The small
values for the amplitude of seasonal factors, and the low
values of the  indicate a weak to non-existent
seasonality.

Asthma
In total, there were 206,561 (104,283 female and 102,278
male) asthma hospital discharges for all ages. Figure 2
shows the monthly rates of asthma per 100,000 popula-
tion. The visual inspection of Figure 2 shows a clear
autumn peak and summer trough seasonal pattern occur-
ring every year over the 12 year period. The Dicky-Fuller
unit root test confirms that the series is stationary. The

Atrial fibrillation hospitalizations per 100,000 populationFigure 1
Atrial fibrillation hospitalizations per 100,000 population
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results of the seasonality tests applied on the rates demon-
strate statistically significant seasonality. The Fisher's
Kappa (FK) test statistics for both genders, female and
male are 21.22, 22.05, and 20.52 with p-values all less
than 0.01. The Bartlett Kolmogorov-Smirnov (BKS) test
statistics are 0.512, 0.518, and 0.489 with p-values all less

than 0.0001. The calculated  values are 0.82, 0.78,

and 0.82 for both genders, females and males respectively.
The difference between maximum and minimum months
parameter estimates are 9.8, 9.1, and 11.6 for both gen-
ders, females and males respectively which directly trans-
lates into the difference in hospitalizations per 100,000
population between the peak and trough in one year. The
large values for the amplitude of seasonal factors, and the

high  values provide clear evidence of strong

seasonality.

Discussion

The results of this study show that the  can be use-

ful in distinguishing weak from strong stable seasonal
effects in both simulation and in actual data sets. While
the statistical tests such as BKS and Fisher's Kappa support

statistical evidence of seasonality in the data, the 

allows quantification of the strength of that stable season-
ality, as demonstrated by the simulation results. Regard-
less of the values of the parameters φ1 and φ2, when the

parameters α and φ12 were zero, the  was small,

and when one or both of those parameters increased,

 increased proportionally. This is important

because any proposed statistics for measuring the strength
of the seasonality must be invariant of the correlation
structure. The simulation results showed the power of the

Asthma hospitalizations per 100,000 populationFigure 2
Asthma hospitalizations per 100,000 population
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 in adequately quantifying the strength of the sea-

sonality of the simulated observations for all models. The

magnitude of  shows how well the next value can

be predicted by using month as the only predictor. In
other words it shows the contribution of seasonality in the
total variation of the data.

When the technique was applied to the two data sets, it
corroborated the visual evidence that asthma is more con-
spicuously seasonal than atrial fibrillation. The seasonal-
ity of asthma has been conclusively demonstrated in
several studies and is likely a key to understanding the eti-
ology of exacerbations of asthma [15-17]. The strength
and consistency of the effect is likely of relevance to health
policy and planning. The seasonality of atrial fibrillation
has been reported, but outcomes were reported as relative
risks [18]. The analysis provided here indicates that the
seasonality of admissions for atrial fibrillation is not likely
of policy or clinical significance as the magnitude is quite
small.

One important question that remains to be answered is
how the magnitude of seasonal factor changes over time

affect the . For non-stable seasonal variation, a

proper transformation such as log may be required to
transfer a non-stable seasonal variation to a stable one.

The value of  may change if the sampling period

changes (e.g. monthly data converted to weekly data). By
including year and month as predictors we can adjust for
moving seasonality, however, further research is required.

Conclusions
The proposed autoregression method is a statistical tech-
nique well suited to the study of seasonality in health
data. Although monthly data was used for this analysis, it
can easily be applied to weekly or seasonal data. The
approach allows researchers to quantify and compare the
strength of the seasonality for different genders and age
groups. The coefficient of determination is easy to calcu-
late and interpret. And finally, it is well known to health
care researchers and is frequently used as a measure for
goodness of fit. For the purposes of health services
research and population health measurement, evidence of
the statistical presence of stable seasonality is insufficient
to determine the etiologic, clinical and policy relevance of
findings. Measurement of the strength of the seasonal
effect is also required in order to provide a robust sense of
seasonality. We believe that this autoregression tech-
nique, in concert with statistical testing, graphical repre-
sentation and measures of the absolute magnitude of
seasonal effect, is an important component to this robust
approach.
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