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Abstract
Background: The recent trends in sedentary life-styles and weight gain are likely to contribute to
chronic conditions such as hypertension, diabetes, and cardiovascular diseases. The temporal
sequence and pathways underlying these conditions can be modeled using the knowledge from the
biomedical and social sciences.

Methods: The Framingham Offspring Study in the U.S. collected information on 5124 subjects at
baseline, and 8, 12, 16, and 20 years after the baseline. Dynamic random effects models were
estimated for the subjects' weight, LDL and HDL cholesterol, and blood pressure using 4 time
observations. Logistic and probit models were estimated for the probability of diabetes and
coronary heart disease (CHD) events.

Results: The subjects' age, physical activity, alcohol consumption, and cigarettes smoked were
important predictors of the risk factors. Moreover, weight and height were found to differentially
affect the probabilities of diabetes and CHD events; body weight was positively associated with the
risk of diabetes while taller individuals had lower risk of CHD events.

Conclusion: The results showed the importance of joint modeling of body weight, LDL and HDL
cholesterol, and blood pressure that are risk factors for diabetes and CHD events. Lower body
weight and LDL concentrations and higher HDL levels achieved via physical exercise are likely to
reduce diabetes and CHD events.

Background
The prevalence of chronic conditions such as hyperten-
sion, non-insulin dependent diabetes mellitus, and coro-
nary heart disease (CHD) in developed countries demand
substantial medical resources [1]. Moreover, these condi-
tions are becoming increasing common among the well-
off groups in middle and low-income countries [2]. While
the quality of life and health of individuals is adversely af-
fected by chronic conditions, there is a concomitant loss
in work productivity [3,4]. This is especially important for
middle and low-income countries where skilled labor is

relatively scarce and the treatment of chronic conditions
may entail a reduction in health care resources available
for diseases afflicting the poor [5]. A preventive approach
to chronic diseases is therefore appealing.

Population surveys covering a large number of individuals
such as NHANES in the U.S. [6] can provide useful in-
sights into risk factors for chronic diseases. However, the
gradual evolution of the multiple risk factors and the on-
set of chronic diseases cannot be addressed using cross-
sectional data. By contrast, longitudinal studies such as
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the Framingham Offspring study (FOS) [7] spanning over
decades, can provide insights into the evolution of the risk
factors and their partial and/or joint effects on chronic
conditions such as diabetes and CHD.

There is a growing interest among policy makers in iden-
tifying preventive strategies for tackling chronic condi-
tions. For example, the Women's Health Initiative is an
ongoing longitudinal study in the U.S. covering 48,000
women for investigating the risk factors of breast cancer
[8]. Detailed analyses of existing longitudinal data sets
can provide useful insights into the effects of factors such
as smoking, physical activity, and alcohol consumption
on the incidence of diabetes and CHD. Because these con-
ditions develop gradually over time, it is important to an-
alyze their effects on intermediate risk factors such as
blood pressure, and LDL and HDL cholesterol. Applica-
tion of longitudinal econometric models incorporating
the inter-dependence between the multiple risk factors
can provide further insights.

The purpose of this paper is to analyze 4 time observa-
tions available on over 5,000 subjects in the FOS and de-
velop empirical models for the subjects' weight, HDL and
LDL cholesterol, and systolic and diastolic blood pressure
that are potential risk factors for diabetes and CHD. Mod-
els were also developed for the probability of diabetes and
CHD events in the 20-year period. A comprehensive anal-
ysis of the multiple risk factors in the FOS using alterna-
tive statistical techniques can facilitate an assessment of
the likely effects of behavioral modifications for reducing
the incidence of diabetes and CHD.

Methods
Study sample
From 1971, a cohort of 5124 men and women who were
the children or spouses of the subjects in the original
Framingham Heart study were recruited for the FOS [7,9].
The subjects were examined at the baseline (Exam 1) and
in Exams 2, 3 and 4 that took place, respectively, 8, 12 and
16 years after Exam 1. The diabetes, CHD, and survival
status was again assessed 20 years after Exam 1.

Variables measured longitudinally in Exams 1–4 in the 
Framingham Offspring public-use files
The subjects' age, sex, alcohol intake, and the number of
cigarettes smoked per day were investigated in Exams 1–4.
Systolic and diastolic blood pressure was measured in the
left arm after the subjects had been sitting still for at least
5 minutes. Height was measured in inches in Exams 1 and
3 and weight was measured in pounds in all 4 exams using
a standard beam balance. The surveys investigated physi-
cal activity patterns in Exams 2 and 4. An index of physical
activity was constructed on the basis of the reported hours
per day of sedentary, slight, moderate and heavy activities.

An index of alcohol consumption was constructed using
the reported intakes of beer, wine, and other alcoholic
beverages.

In each exam, blood was drawn after a 12-hour fast for de-
termination of plasma glucose; non-insulin dependent di-
abetes mellitus was defined as glucose greater than 140
mg per deciliter of blood or if the subjects were taking pre-
scription medication. HDL cholesterol was measured after
precipitation of the plasma with heparin-manganese. LDL
cholesterol was determined according the techniques de-
scribed in Lipid Research Clinic Program [10]. A CHD
event was defined as the occurrence of angina pectoris,
myocardial infarction, coronary insufficiency, or coronary
death.

The analytical framework
The risk factors for diabetes and CHD events such as
weight, HDL and LDL, and blood pressure respond grad-
ually over time to dietary intakes, life-style, smoking, etc.
Of these, changes in body weight resulting from energy
imbalance are apparent to the subjects themselves. While
the nutrient composition of the diet was not measured in
the FOS, one would expect body weight to be a predictor
of LDL because fat intakes have increased in the observa-
tion period [2]. Moreover, body size is a predictor of ener-
gy needs. Thus, one would expect height and weight to be
predictors of nutrient intakes, LDL, and other risk factors.
Because height is a good approximation for skeletal size,
height is an important predictor of weight [11–13]; height
also reflects nutrition in the early years that is influenced
by socioeconomic factors.

In models for the risk factors, it may be inappropriate to
combine height and weight as the BMI [14]. From the
standpoint of CHD events, it may be more risky for short-
er individuals to gain weight than for taller individuals be-
cause coronary artery diameter is likely to be higher in
taller subjects [15]. By contrast, the risk of diabetes may be
less dependent on height; persisting energy imbalances
may lead to similar outcomes in terms of the development
of insulin resistance. It is therefore desirable to include
height and weight in the empirical models and test the
null hypothesis that these variables can be combined as
the BMI [13].

Because specification of empirical models is limited by
data availability, it was necessary to make simplifying as-
sumptions in analyzing the risk factors. The empirical
model for the data from the FOS is outlined in the Figure
1. The subjects' age, sex, and height were fixed characteris-
tics. However, due to a paucity of socioeconomic variables
such as education and income, the box containing the
background characteristics also included the number of
cigarettes smoked, alcohol intake, and physical activity.
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Because weight changes can influence risk factors such as
blood pressure and LDL cholesterol, weight of the n sub-
jects was first explained by a dynamic formulation allow-
ing the current weight to depend on previous
measurement (i = 1,2,..., n; t = 2,3,4):

ln (WT)it = a0 + a1 (Sex)i + a2 ln (Age)i + a3 [ln (Age)]2
i + a4

ln (Height)i  (1)

+ a5 (Alcohol index)it + a6 (Cigarettes)it + a7 (Physical
activity)it

+ a8 ln (WT)it-1 + u1it

Here, ln represents natural logarithm. Subjects' weight,
age, and height were transformed into natural logarithms,
partly to reduce heteroscedasticity [16]. The coefficients of
the explanatory variables in logarithms were thus the
"elasticities" (percentage change in the dependent varia-
ble resulting from a 1% change in the independent varia-
bles). Because the model in equation (1) was dynamic,
the long run impact of an explanatory variable on weight
was the estimated coefficient in equation (1) divided by
(1-a8). Indicator variables for the observations from Ex-
ams 3 and 4 were included in the model to allow different
time means in all 4 examinations. The u1it in equation (1)
were random error terms that could be decomposed in a
random effects fashion as:

u1it = δi + v1it  (2)

where, δi were subject specific random effects that were as-
sumed to be normally distributed with zero mean and a
constant variance, and v1it were normally distributed error
terms with zero mean and constant variance [17].

The models for HDL and LDL cholesterol and systolic and
diastolic blood pressure were also dynamic and, in
addition to the explanatory variables in equation (1), con-
tained weight as an explanatory variable. For example, the
dynamic random effects model for HDL could be written
as (i = 1,2,..., n; t = 2,3,4):

ln (HDL)it = b0 + b1 (Sex)i + b2 ln (Age)i + b3 [ln (Age)]2
i +

b4 ln (Height)i  (3)

+ b5 (Alcohol index)it + b6 (Cigarettes)it + b7 (Physical
activity)it

+ b8 ln (WT)it+ b9 ln (HDL)it-1 + u2it

The error term u2it in equation (3) also had a random ef-
fects structure as in equation (2). Moreover, the random
effects affecting u2it could be correlated with those influ-
encing weight. Such problems can be addressed using the
econometric techniques for "endogeneity" briefly out-
lined in the next section.

The binary logistic or probit models for whether the sub-
jects' developed diabetes or had a CHD event in the 20-
year period, explained by the characteristics in Exam 1,
were, respectively:

(Diabetes)i = c0 + c1 (Sex)i + c2 (Age)i + c3 (Height)i + c4
(Alcohol index)i1  (4)

+ c5 (Cigarettes)i1 + c6 (Physical activity)i1 + c7 (HDL)i1 +
c8 (LDL)i1

+ c9 (SBP)i1 + c10 (DBP)i1 + c11 (WT)i1 + u3i

and

(CHD)i = d0 + d1 (Sex)i + d2 (Age)i + d3 (Height)i + d4 (Al-
cohol index)i1  (5)

+ d5 (Cigarettes)i1 + d6 (Physical activity)i1 + d7 (HDL)i1 +
d8 (LDL)i1

+ d9 (SBP)i1 + d10 (DBP)i1 + d11 (WT)i1 + d12 (Diabetes)i1
+ u4i

Here, the variables Diabetes or CHD were latent variables
assuming values 0 or 1 depending on if the subject report-
ed to have had diabetes or a CHD event, respectively. Ex-
planatory variables in equations (4) and (5) were the

Figure 1
Empirical model for risk factors for diabetes and cor-
onary heart disease. A graphical representation of the 
empirical model for risk factors for diabetes and coronary 
heart disease in the Framingham Offspring Study.
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measurements taken at Exam 1. The analyses were also
done separately for men and women and the null hypoth-
esis of constancy of the model parameters in the two
groups was tested using likelihood ratio tests. The estima-
tion methods assumed the errors u3i and u4i to be draw-
ings from a logistic distribution or from a normal
distribution for the probit models. For probit analysis us-
ing current levels of explanatory variable in the 4 time pe-
riods, random effects models were estimated under the
assumptions that u3i and u4i were normally distributed
with a random effects structure as in equation (2). Finally,
Cox proportional hazard models were estimated for the
age at first CHD event.

Statistical methods
Because only 4 time observations were available, estima-
tion of the dynamic models given in equation (1) was
based on the assumptions that the number of subjects (n)
was large but the number of time periods was fixed. Thus,
initial observations on the dependent variables (e.g. WTi1
in equation (1)) were treated as "endogenous" variables
(correlated with the errors, [18]). The errors on equations
(1) were assumed independent across subjects but corre-
lated over time with a positive definite variance-covari-
ance matrix. The random effects decomposition in
equation (2) was a special case of this formulation.

The joint determination of the 4 observations in the dy-
namic models for weight (and HDL, LDL, and systolic and
diastolic blood pressure) implied that econometric tech-
niques for estimating simultaneous equations models
were useful. Details of the maximum likelihood estima-

tion method are presented in [18]. The profile log-likeli-
hood functions were optimized using a numerical scheme
E04 JBF from [19]; asymptotic standard errors of the pa-
rameters were obtained by approximating second deriva-
tives of the function at the maximum. Possible correlation
between the random effects δi and the mean over time of
the subject's body weight was tested using a likelihood ra-
tio statistic that was distributed, for large n, as a Chi-
square variable with 4 degrees of freedom. The restrictions
for combining height and weight as the BMI in equation
(3), for example, were:

b4 + 2b8 = 0  (6)

These were tested by a likelihood ratio test that was dis-
tributed for large n as a Chi-square variable with 1 degree
of freedom.

For the descriptive statistics, the package SPSS [20] was
used. Binary logistic models for diabetes and CHD events
were estimated using SPSS; Cox proportional hazard
models were also estimated using SPSS. Probit models
were estimated using the packages LIMDEP [21] and STA-
TA [22].

Results
Descriptive statistics
The sample means and standard deviations of selected
variables from the 4 exams in the FOS are presented in Ta-
ble 1. The subjects' average age was 36 years and 52% were
women. There was an increase in the body weight over
time. This was also true for systolic blood pressure and for

Table 1: Sample means and standard deviations of selected variables for the subjects in the 4 exams in the Framingham offspring study1

Exam 1 N = 5120 Exam 2 n = 3861 Exam = 3 n = 3871 Exam 4 n = 4017

Age, y 36.3 ± 10.4
Sex, 0–1 (Female = 1) 0.52 ± 0.50
Height, inches 66.21 ± 3.76
Weight, lb 158.34 ± 34.28 161.73 ± 34.23 165.78 ± 34.84 168.67 ± 35.31
BMI, Kg/m2 25.39 ± 4.42 25.82 ± 4.41 26.28 ± 4.58 26.91 ± 4.74
Systolic blood pressure, mm Hg 121.59 ± 15.96 122.34 ± 16.74 123.64 ± 16.78 129.97 ± 18.42
Diastolic blood pressure, mm Hg 78.32 ± 11.25 79.35 ± 11.08 79.42 ± 9.97 77.71 ± 10.72
HDL, mg/dL 50.52 ± 14.68 48.31 ± 13.46 50.88 ± 14.86 49.48 ± 14.83
LDL, mg/dL 124.86 ± 35.43 130.59 ± 35.19 133.88 ± 36.55 -
Cigarettes smoked per day2, n 13.95 ± 14.74 8.49 ± 13.76 6.83 ± 12.88 5.49 ± 11.55
Physical activity score, n - 3.91 ± 3.61 - 5.75 ± 4.20
Alcohol index, n 3.71 ± 5.09 3.77 ± 5.29 3.34 ± 4.84 2.85 ± 4.35
Proportion with diabetes 0.016 ± 0.13 0.026 ± 0.16 0.037 ± 0.19 0.051 ± 0.22
Proportion with coronary heart disease 0.013 ± 0.11 0.032 ± 0.18 0.047 ± 0.21 0.065 ± 0.25
Age diabetes diagnosed3, y 52.13 ± 10.20
Age coronary heart disease diagnosed3, y 54.42 ± 8.76

1Values are means ± standard deviations. 2 Only the smokers were included in these calculations. 3 Only the 6.7% of the subjects with diabetes and 
9.3% subjects with coronary heart disease were included in these calculations.
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LDL cholesterol. Table 1 also reports the mean number of
cigarettes smoked per day calculated for smokers; there
was a decline over time in the cigarettes smoked. For the
subjects that were diagnosed with diabetes, the mean age
at the time of the diagnosis was 52 years; the first CHD
event was diagnosed at the average age of 54 years.

Results from estimating dynamic random effects models 
for body weight, HDL, LDL, and systolic and diastolic 
blood pressure
Table 2 presents the maximum likelihood estimates of dy-
namic random effects models for weight, and HDL and
LDL cholesterol; the results for diastolic and systolic
blood pressure are presented in Table 3. In all cases, the
dependent variables were transformed into natural loga-
rithms; the independent variables age, height, and weight
were also transformed into logarithms.

Body weight
The results for body weight in the second column of Table
2 showed that men were significantly heavier than wom-
en. Both age and age-squared were significant predictors
of weight thereby showing an increase in weight with age,
though at a declining rate. From the estimated parameters,
the turning point of weight with respect to age occurred at
approximately 38 years. However, this estimate was sub-
ject to considerable estimation error and may have also
been influenced by attrition in the sample.

The coefficient of physical activity score was negative but
was not statistically significant. This could be because
physical activity was measured only in Exams 2 and 4. The
alcohol index was positively associated with weight,
whereas cigarettes smoked were negatively associated;
both these coefficients were statistically significant at the
5% level. Height was a significant predictor of weight,
though the coefficient estimate 0.796 was significantly
lower than the value 2; the data did not indicate a prefer-
ence for modeling the BMI. Coefficient of the lagged de-
pendent variable was estimated to be approximately 0.5
and was significant. Thus, the long run effects of an inde-
pendent variable on weight were twice the magnitude of
the corresponding short run coefficients in Table 2 (i.e.
the coefficients divided by 1- the coefficient of the lagged
dependent variable). Coefficients of the indicator varia-
bles for Exams 3 and 4 were positive and statistically
significant.

HDL cholesterol
The results for HDL cholesterol are in the third column of
Table 2. Men had significant lower concentrations of HDL
than women. There was an increase in HDL with age
though at a declining rate. The physical activity score and
alcohol index were significant predictors of HDL with
positive coefficients; the number of cigarettes smoked was
negatively associated with HDL. The coefficient of height
was positive and that of weight was negative in the model
for HDL. However, the likelihood ratio test for combining
height and weight as the BMI rejected the restrictions in

Table 2: Maximum likelihood estimates of dynamic random effects model for Weight, HDL and LDL of the subjects in the Framingham 
offspring study in the 4 exams explained by demographic, behavioral and anthropometric variables1,2

Dependent variable

Independent variable Weight n = 2481 HDL n = 2481 LDL3 n = 2503
Coefficient SE Coefficient SE Coefficient SE

Constant 1.303* 0.136 3.6750* 0.032 2.106* 0.451
Sex -0.050* 0.008 0.100* 0.012 -0.023 0.023
Age2 0.240* 0.018 0.035* 0.004 -0.203* 0.060
Age-squared2 -0.033* 0.002 -0.005* 0.001 0.053* 0.004
Physical activity score -0.001* 0.0006 0.002* 0.001 0.001 0.002
Alcohol index 0.0007* 0.0002 0.007* 0.001 -0.001 0.001
Cigarettes smoked -0.0007* 0.0001 -0.002* 0.0002 0.001* 0.0003
Height2 0.796* 0.097 0.747* 0.087 -1.291* 0.174
Weight2 - - -0.469* 0.030 0.461* 0.055
Lagged dependent variable2 0.495* 0.053 0.453* 0.017 0.305* 0.114
Indicator variable for Exam 3 0.012* 0.002 0.077* 0.005 0.005 0.007
Indicator variable for Exam 4 0.014* 0.003 0.032* 0.004 - -
Chi-square statistic4, df = 4 - 20.2* 26.7*
Chi-square statistic5, df = 1 - 31.3* 57.3*

1 Values are slope coefficients and standard errors; see equations (1) and (3) in the text for the explanation of the models. 2 The dependent and the 
marked independent variables were in natural logarithms. 3 Only 3 time observations were available on LDL. 4 Chi-square test for the exogeneity of 
the mean over time of body weight. 5 Chi-square test for combining height and weight as the BMI. * P < 0.05.
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equation (6). This may have been partly due to the rela-
tively large samples used in the estimation. The likelihood
ratio test for exogeneity of the mean over time of body
weight in the model for HDL also rejected the null hy-
pothesis. Thus, the factors affecting body weight appeared
to be correlated with the unobserved random effects af-
fecting HDL. The results in Table 2 took account of these
correlations in the estimation.

LDL cholesterol
The results for LDL cholesterol reported in the last column
of Table 2 were based on the observations in Exams 1, 2
and 3; only the indicator variable for Exam 3 was included
in this model. Sex differences in LDL were not statistically
significant. The relationship between age and LDL was
again a quadratic one though the turning point occurred
at age 6.8 years indicating that, for the age range in the
sample, there was a steady increase in LDL with time. Both
the physical activity score and the index of alcohol intake
were insignificant predictors of LDL. However, the
number of cigarettes smoked was positively associated
with LDL. Height was negatively associated whereas
weight was positively associated with LDL. Although the
likelihood ratio test again rejected the combination of
height and weight as the BMI, one can broadly interpret
the results as implying that subjects with higher BMI had
lower HDL and higher LDL concentrations. Coefficient of
the lagged dependent variable was statistically significant
and was smaller than in the model for HDL presumably

due to greater changes in LDL in response to the dietary
factors [23].

Systolic and diastolic blood pressure
Table 3 presents the maximum likelihood estimates of the
dynamic random effects models for the systolic and
diastolic blood pressure. There were no significant sex dif-
ferences in the results from the two models. The quadratic
terms in age were significant in both models though with
opposite signs. The coefficients of age variables implied
that systolic blood pressure declined until the age of ap-
proximately 18 years and thereafter increased. By contrast,
diastolic blood pressure increased until the age 51 years
and then showed a decline. These non-linear estimates
were indicative of the complex time profiles of blood pres-
sure [24].

Results from binary logistic and probit regressions for dia-
betes in the 20-year period
The results from estimating binary logistic and probit
models for whether the subjects had diabetes during the
20-year period are in Table 4. To circumvent the problems
due to censoring, the risk factors included were the meas-
urements taken at Exam 1. Table 4 also reports the confi-
dence intervals for the odds ratio using the parameter
estimates from the logistic regression, and "marginal ef-
fects" estimated from the probit model. Chi-square statis-
tics for combining height and weight as BMI are also
reported.

Table 3: Maximum likelihood estimates of dynamic random effects model for Systolic and Diastolic Blood Pressure of the subjects in 
the Framingham offspring study in the 4 exams explained by demographic, behavioral and anthropometric variables1,2

Dependent variable

Independent variable Systolic Blood Pressure n = 2481 Diastolic Blood Pressure n = 2481
Coefficient SE Coefficient SE

Constant 3.791* 0.156 1.585* 0.158
Sex -0.001 0.006 0.003 0.005
Age2 -0.707* 0.029 0.425* 0.025
Age-squared2 0.122* 0.003 -0.054* 0.003
Physical activity score 0.0007 0.0005 0.001 0.0006
Alcohol index 0.002* 0.0003 0.002* 0.0003
Cigarettes smoked 0.0000 0.0001 -0.0001 0.0001
Weight2 0.262* 0.016 0.317* 0.018
Height2 -0.451* 0.049 -0.373* 0.058
Lagged dependent variable 0.223* 0.046 0.180* 0.054
Indicator variable for Exam 3 0.005* 0.002 -0.005* 0.002
Indicator variable for Exam 4 0.026* 0.002 -0.009* 0.003
Chi-square statistic3, df = 4 30.8* 35.5*
Chi-square statistic4, df = 1 35.1* 43.9*

1 Values are slope coefficients and standard errors; see equations (1)-(3) in the text for the explanation of the models.2 The dependent and the 
marked independent variables were in natural logarithms. 3 Chi-square test for the exogeneity of the mean over time of body weight. 4 Chi-square 
test for combining height and weight as the BMI. * P < 0.05.
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The results for the model for diabetes using logistic and
probit models were consistent across the respective mod-
els. The coefficients of sex, physical activity score, alcohol
index, systolic blood pressure, and LDL concentrations
were not statistically different from zero. However, ciga-
rette smoked, diastolic blood pressure, and weight were
significantly positively associated with the probability of
diabetes, whereas HDL and height were negatively associ-
ated. The likelihood ratio statistic accepted the null hy-
pothesis that height and weight could be combined as the
BMI. Thus, for example, a unit increase in the BMI at Exam
1 increased the chances of getting diabetes by between
8%–15% in the 20-year period.

Results from binary logistic and probit regressions for a 
CHD event in the 20-year period
The results from the binary logistic and probit regressions
for CHD events during the 20-year period are presented in
Table 5. Women had between 43%–75% lower chances of
CHD events. Coefficients of physical activity, alcohol in-
dex, and systolic blood pressure were not statistically
different from zero in Table 5. However, LDL and HDL
concentrations, cigarettes smoked, and diastolic blood
pressure were significant predictors of CHD events.

Height and weight were not significant predictors of CHD
events, though the P-value of the coefficient of height was
0.053. When height and weight were combined as BMI,
the likelihood ratio test rejected the restrictions implied
by the BMI transformation in the logistic regression, and

the coefficient of BMI was not significantly different from
zero. When weight was dropped from the model for CHD,
height was significantly negatively associated with the
probability of CHD in both the logistic and the probit
models. By contrast, when height was dropped from the
model, weight was not a significant predictor of CHD.
These results indicated that diameter of coronary arteries
was likely to be influenced by height and hence taller sub-
jects had lower chances of CHD events. By contrast, the
significance of BMI in the model for diabetes showed that,
irrespective of height, being over-weight increased the
chances of diabetes.

The coefficient of the variable for diabetes was positive
and was a statistically significant predictor of CHD events;
subjects with diabetes in Exam 1 had between 70%–534%
higher chances of a CHD event. Lastly, the random effects
probit models were estimated for diabetes and CHD
events using current values of the explanatory variables in
the 4 exams. Including the random effects, however, often
led to boundary solutions using the algorithms in the soft-
ware packages [21,22]. These results could be due to the
serial correlation in the errors affecting longitudinal pro-
bit models. Moreover, Cox proportional hazard models
were estimated for the age at which the subjects first had
the CHD event using the explanatory variables measured
at Exam 1. The predictive power of such models was poor
in comparison with the results for the binary logistic and
probit models indicating the uncertainties in predicting
subjects' ages at the time of the first CHD event.

Table 4: Maximum likelihood estimates of binary logistic and probit regression models for diabetes for subjects in the Framingham 
offspring study in the 20-year observation period predicted by the demographic, behavioral and anthropometric variables measured at 
Exam 11

Dependent variable: Diabetes in the 20-year period n = 3718

Independent variable Binary logistic model Probit model
Coefficient SE 95% CI for 

exp (β)
Coefficient SE Marginal 

effect
SE

Constant -8.658* 0.749 - - -4.666* 0.373 - -
Sex 0.289 0.172 0.952 1.870 0.153 0.085 0.013 0.007
Age 0.053* 0.008 1.038 1.072 0.026* 0.413 0.002* 0.0003
Physical activity score 0.010 0.019 0.973 1.048 0.004 0.010 0.0003 0.0008
Alcohol index 0.016 0.012 0.992 1.040 0.008 0.007 0.0007 0.0006
Cigarettes smoked 0.009* 0.004 1.000 1.018 0.005* 0.002 0.0004* 0.0002
Systolic Blood Pressure -0.004 0.008 0.981 1.011 -0.0001 0.004 -0.0001 0.0003
Diastolic Blood Pressure 0.035* 0.012 1.012 1.060 0.016* 0.006 0.001* 0.0005
LDL -0.001 0.002 0.995 1.003 -0.0005 0.001 0.00004 0.0009
HDL -0.038* 0.006 0.951 0.975 -0.018* 0.003 -0.002* 0.0003
BMI 0.112* 0.016 1.085 1.154 0.059* 0.008 0.005* 0.007
Chi-square statistic2, df = 1 0.005 - 1.29 -

1 Values are slope coefficients and standard errors; see equation (4) in the text. 2 Chi-square test for combining height and weight as the BMI based 
on a logarithmic specification of the model. * P < 0.05.
Page 7 of 10
(page number not for citation purposes)



Population Health Metrics 2003, 1 http://www.pophealthmetrics.com/content/1/1/3
Discussion
This paper analyzed the effects of risk factors such as
smoking, weight, HDL, LDL, and blood pressure for the
development of chronic condition diabetes and CHD
events using data from the FOS. Because of the gradual ev-
olution of the risk factors, dynamic random effects mod-
els were used to explain the risk factors by age, physical
activity, alcohol consumption, and cigarettes smoked. An
advantage of the present approach was that one can dis-
cuss pathways through which the multiple risk factors af-
fected the diabetes and CHD outcomes [25]; alternative
approaches are available in the statistical literature [26].

While the inter-relationships between behavioral and bi-
ological factors are complex, the present analysis enables
the estimation of the combined effects of the risk factors
on CHD events under certain assumptions. The model
represented by equations (4) and (5) was "triangular" and
in the calculations reported below, we ignored the endog-
eneity of weight and potentially small bias in the estimate
of the coefficient of diabetes in the model for CHD. The
total effect of an explanatory variable on CHD events was
thus the coefficient reported in Table 5, plus the coeffi-
cient of diabetes (1.195 in the logistic model) multiplied
by the respective coefficient of the explanatory variable in
the model for diabetes (Table 4).

First, after controlling for sex, age, physical activity, smok-
ing, blood pressure, and LDL and HDL cholesterol, alco-

hol intake was not significantly associated with the
probability of diabetes and CHD events in Tables 4 and 5,
respectively. This is in contrast with the beneficial effects
of alcohol intake on CHD among diabetic nurses in the
U.S. [27], and male British doctors [28]. An important as-
pect in the analyzing the effects of alcohol intake is the
type of drinks consumed and if they were consumed with
meals [29]. Because alcohol intake data in the FOS cannot
make such distinctions, it was perhaps reasonable to ex-
pect that the analysis would not provide unambiguous ev-
idence on this issue. Further, in the dynamic random
effects models, alcohol intake was positively associated
with body weight, HDL, and diastolic and systolic blood
pressure. Of these 4 variables, only HDL predicted lower
chances of CHD events. Thus, the analysis of the multiple
risk factors in the FOS indicated an overall tendency of the
beneficial and harmful effects of alcohol intake to cancel
out.

Second, LDL was seen to be an important risk factor for
CHD events. The average LDL concentration at the first ex-
amination was approximately 125 mg/ dL. A decrease of
35 mg in LDL to 90 mg, for example, would constitute a
28% decline. Using the estimated parameters from the lo-
gistic regression (Table 5), the effect of this decrease
would be to lower the chances of CHD events by between
14%–39%. Because LDL was not significant in the model
for diabetes, there were no additional effects of lowering
LDL. By contrast, an increase of 15 mg/dL in HDL concen-

Table 5: Maximum likelihood estimates of binary logistic and probit regression models for a CHD event for subjects in the Framingham 
offspring study in the 20-year observation period predicted by the demographic, behavioral and anthropometric variables and diabetes 
in Exam 11

Dependent variable: CHD event in the 20-year period n = 3718

Independent variable Binary logistic model Probit model
Coefficient SE 95% CI for exp 

(β)
Coefficient SE Marginal 

effect
SE

Constant -3.531 1.902 - - -2.072* 0.996 - -
Sex -0.979* 0.209 0.249 0.566 -0.507* 0.107 -0.051* 0.011
Age 0.080* 0.008 1.067 1.100 0.041* 0.004 0.004* 0.0004
Physical activity score -0.021 0.017 0.947 1.013 -0.010 0.009 -0.001 0.001
Alcohol index -0.004 0.011 0.974 1.019 0.002 0.006 -0.0002 0.0006
Cigarettes smoked 0.015* 0.004 1.008 1.023 0.009* 0.002 0.0009* 0.0002
Systolic Blood Pressure -0.008 0.007 0.978 1.005 -0.003 0.004 -0.0003 0.0004
Diastolic Blood Pressure 0.033* 0.010 1.013 1.055 0.017* 0.005 0.002* 0.0006
LDL 0.007* 0.002 1.004 1.011 0.004* 0.001 0.0004* 0.0001
HDL -0.020* 0.005 0.969 0.991 -0.009* 0.002 -0.0009* 0.0003
Weight 0.000 0.006 0.988 1.012 0.0005 0.003 0.0001 0.003
Height -2.077 1.075 0.015 1.031 -1.075 0.564 -0.109 0.057
Diabetes in Exam 1 1.195* 0.333 1.721 6.343 0.695* 0.196 0.070* 0.020
Chi-square statistic2, df = 1 4.65* - 2.46 -

1 Values are slope coefficients and standard errors; see equation (5) in the text. 2 Chi-square test for combining height and weight as the BMI based 
on a logarithmic specification of the model. * P < 0.05.
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tration would constitute an approximate 30% increase
and predict a decline in CHD events by 15%–45%. Be-
cause HDL was negatively associated with diabetes, this
decrease in HDL would further lower chances of CHD
events by 3%–5%. These results also show the importance
of disaggregating serum cholesterol into the HDL and LDL
categories for the analysis of risk factors for cardiovascular
diseases [30].

Third, the effects of smoking 14 cigarettes per day at the
first examination would imply a likely increase in CHD
events between 11%–32%; this effect would increase to
between 12%–33% by taking into account the effects of
smoking on diabetes. Using the estimates from Table 5,
halving the average number of cigarettes smoked would
reduce CHD events between 6%–16%. Lastly, the effects
of body weight on CHD events in this population ap-
peared to operate through the decline in diabetes. Using
the results in Table 4, a 12% decrease in average BMI in
Exam 1 to 22 was likely to reduce the number of subjects
with diabetes from approximately 350 to 110. Because di-
abetic subjects had approximately a 3-fold greater chance
of CHD events, the 12% reduction in BMI was likely to
lead to a 10% decline in CHD events. Overall, the results
from FOS indicated that the importance of reducing
weight, LDL cholesterol and blood pressure [31] and in-
creasing HDL for reducing the prevalence of diabetes and
CHD events in the U.S. The econometric modeling of the
risk factors indicated that it is better to rely on joint rather
than the partial effects of risk factors in part because the
time sequence of chronic diseases such as diabetes and
CHD is known. The importance of modeling multiple risk
factors for various diseases has also been emphasized in
recent studies [32].
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