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Abstract

The Millennium Development Goals (MDGs) have prompted an expansion in approaches to deriving health metrics to
measure progress toward their achievement. Accurate measurements should take into account the high degrees of
spatial heterogeneity in health risks across countries, and this has prompted the development of sophisticated
cartographic techniques for mapping and modeling risks. Conversion of these risks to relevant population-based
metrics requires equally detailed information on the spatial distribution and attributes of the denominator populations.
However, spatial information on age and sex composition over large areas is lacking, prompting many influential
studies that have rigorously accounted for health risk heterogeneities to overlook the substantial demographic
variations that exist subnationally and merely apply national-level adjustments.
Here we outline the development of high resolution age- and sex-structured spatial population datasets for Africa in
2000-2015 built from over a million measurements from more than 20,000 subnational units, increasing input data
detail from previous studies by over 400-fold. We analyze the large spatial variations seen within countries and across
the continent for key MDG indicator groups, focusing on children under 5 and women of childbearing age, and find
that substantial differences in health and development indicators can result through using only national level statistics,
compared to accounting for subnational variation.
Progress toward meeting the MDGs will be measured through national-level indicators that mask substantial
inequalities and heterogeneities across nations. Cartographic approaches are providing opportunities for quantitative
assessments of these inequalities and the targeting of interventions, but demographic spatial datasets to support such
efforts remain reliant on coarse and outdated input data for accurately locating risk groups. We have shown here that
sufficient data exist to map the distribution of key vulnerable groups, and that doing so has substantial impacts on
derived metrics through accounting for spatial demographic heterogeneities that exist within nations across Africa.
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Introduction
The Millennium Development Goals (MDGs) were initi-
ated to encourage development by improving social and
economic conditions in the world’s poorest countries [1].
In order to achieve this on a 15-year timeline, targets and
indicators for poverty reduction and health improvement
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were set. There are eight goals with 21 targets, and a series
of measurable indicators for each target, many of which
are focused on health in specific target demographic
groups, mainly children and pregnant women [1]. The ini-
tiation of these indicators, as well as a general growth in
the number of health metric studies, has prompted sub-
stantial growth in approaches to measure them, with in-
creasingly sophisticated methods that attempt to capture
spatial heterogeneities in health conditions being devel-
oped (e.g. [2-10]).
An improved understanding of the geographic variation

in health status and risks and access to services and care
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within countries is increasingly being recognized as central
to meeting health and development goals and delivering
equity in interventions and impacts [11-13]. For instance,
approaches based on local epidemiological and coverage
data have been identified as vital to achieving high impacts
in reducing childhood mortality for MDGs 4 and 5 [14],
while the subnational heterogeneity in HIV [15,16] and
malaria [5,17] prevalences mean that effective targeting of
interventions remains vital in achieving MDG 6 [1]. Indi-
cators assessed at national scales can often conceal im-
portant inequities, with the rural poor often least well
represented [12,18]. Moreover, as international funding
for health and development comes under pressure, the
ability to target limited resources to underserved groups
becomes crucial. Substantial demographic variations exist
across countries and between urban and rural areas [19].
With MDG health indicators tied to specific vulnerable
groups, there is a need to know where these vulnerable
groups are and the number of individuals at risk that exist
in order to accurately characterize denominators.
Health metrics continue to be collected, analyzed, and

reported at national scales (e.g.[20-22]); however, datasets
collected at subnational levels are increasingly available,
and approaches that attempt to capture the spatial hetero-
geneity that often exists subnationally are being developed.
The importance of geography is being recognized in devel-
opment [23], mortality [24], and disease risks [19,25], with
methods for mapping these factors at fine subnational
scales becoming increasingly sophisticated and common
in large-scale health metric studies [25]. While such pro-
jects are utilizing contemporary and fine resolution
datasets to build the most spatially accurate evidence
bases for MDG progress tracking, each are generally com-
bined with spatial population datasets that contain no
subnational information on target demographic groups to
obtain denominators [19]. This lack of spatial data to
quantify age groups by sex has meant that the increasing
number of studies that are mapping indicators and risks
subnationally continue to rely on simple national adjust-
ments of spatial population data to provide denominators.
For example, to estimate the number of children under 5
years old living at risk of P. falciparummalaria in Tanzania,
previous work [5] has involved the development of a de-
tailed map of prevalence from hundreds of community
prevalence surveys, then overlaying this onto a detailed
gridded population distribution dataset [26] to estimate
total populations at risk, but then simply using the United
Nations national-level estimate [27] of the proportion of
the population that is under 5 (17.9%) to convert this to an
estimate of under-5s at risk, despite clear evidence of large
subnational differences in the proportions of residential
populations that are under 5 [19]. Further examples where
similar national-level adjustments have been made include
the estimation of numbers of pediatric fevers associated
with malaria [28], numbers of preschool children at risk of
anemia [10], schistosomiasis prevalence in children and
under-20-year-olds [9,29], numbers of children residing in
areas suitable for seasonal malaria chemoprevention [30],
and global malaria mortality [6]. Moreover, in each of these
cases, and for many other cartography-based health metric
projects, the spatial demographic data used has been ad-
justed to a year of interest using national-level growth
rates, ignoring the fact that the population distribution of a
country changes heterogeneously over time [19].
Here we assess the importance of accounting for

subnational demographic variations in deriving health met-
rics. We present the development of ~100 m spatial reso-
lution age- and sex-structured spatial population datasets
for Africa built from satellite imagery and over a million
measurements derived from more than 20,000 subnational
administrative units and originating from a variety of
publicly available sources that include census data and na-
tional household surveys. The effects of accounting for
subnational demographic heterogeneity on estimates of the
numbers of women of childbearing age and children under
5 years old impacted by long travel times to services and
risks of malaria transmission, respectively, are then quanti-
fied to provide illustrative analyses.
Methods
Constructing a detailed and contemporary population
distribution dataset
The AfriPop project (www.afripop.org) has recently com-
pleted construction of 2010 and 2015 estimates of popula-
tion distribution for continental Africa and Madagascar at
approximately 100 m spatial resolution. Full details are
provided in Linard et al. [31] and on the project website
(www.afripop.org). Briefly, a GIS-linked database of census
and official population estimate data was constructed,
targeting the most recent and spatially detailed datasets
available, given their importance in producing accurate
mapping [31-33]. Detailed maps of settlement extents
were derived from Landsat satellite imagery through either
semi-automated classification approaches [33,34] or expert
opinion-based analyses [31]. These settlement maps were
then used to refine land cover data, while local census data
mapped at fine resolution enumeration area level from
sample countries across the continent were exploited to
identify typical regional per-land cover class population
densities, which were then applied to redistribute census
counts to map human population distributions at 100 m
spatial resolution continent-wide [31,33,35]. Where avail-
able, additional country-specific datasets providing valu-
able data on population distributions not captured by
censuses, such as internally displaced people or detailed
national surveys, were incorporated into the mapping
process [36].

http://www.afripop.org
http://www.afripop.org
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Compiling national estimates of age and sex structures
In order to examine the effects of utilizing subnational
data on age and sex structures of populations, 2010
national-level data were first obtained to provide a base-
line for comparison. These were obtained from the
United Nations Population Division’s World Population
Prospects 2010 publication [27] and are derived from
national-level demographic models built upon census
data. These national-level proportions were then used to
adjust the gridded population dataset described above to
produce separate five-year age group gridded datasets by
sex, following approaches used in many previous studies
that assume demographic homogeneity across countries
(e.g. [6,9,10,28,30,37]).

Compiling subnational estimates of age and sex
structures
Data on subnational population compositions from the
last 20 years were obtained from a variety of sources
for all mainland African countries, plus Madagascar
(Additional file 1: Protocol S1). Contemporary census-
based counts broken down at a fine resolution adminis-
trative unit level generally provide the most reliable
source for population composition mapping, due to the
large sample sizes providing reliable information summa-
rized for small areas. Where age and sex data reported at
subnational levels were available for censuses undertaken
within the last two decades, these were obtained for
this study (Additional file 1: Protocol S1). An addition
to the aggregated full census data are large samples of
household-level records derived from censuses (census
microdata) that provide age and sex structure, reported
generally by administrative level 1 (e.g., province) or 2
(e.g., district). Census microdata on subnational age and
sex proportions by subnational regions for African coun-
tries within the last twenty years were obtained where
available (Additional file 1: Protocol S1). While census data
are often readily available for high-income countries, for
African countries census data with subnational reporting
of age and sex structure can often be either unavailable or
substantially more than a decade old. Alternative national
household survey data sources were therefore exploited
to provide the most contemporary and spatially de-
tailed estimates as possible of age and sex proportions,
given the constraints of their sampling frameworks.
Here, national household survey data on population
age and sex compositions were obtained from the most
recent Demographic and Health Survey (DHS), Malaria
Indicator Survey (MIS), or AIDS Indicator Survey
(AIS) [38], or from Multiple Indicator Cluster Surveys
(MICS) [39], for all countries where such surveys have
been undertaken.
Summaries of subnational population structure by sex

and five-year age groupings from either full national
census summaries, census microdata, or household sur-
veys were obtained for 47 of the 50 countries in main-
land Africa, plus Madagascar. Where multiple datasets
from similar time periods were available, the census or
census microdata were given priority for use, due to the
larger sample sizes. For four countries (Libya, Eritrea,
Western Sahara, and Equatorial Guinea), no subnational
estimates of age and sex structures were found, and for
these countries the UN national estimates and projec-
tions for the 2000-2015 period [27] were obtained and
used in the mapping. The relatively small sample sizes
for household survey data and census microdata com-
pared to those from full census data mean that age and
sex proportions derived from them are more uncertain.
To ensure that age proportions derived from these
datasets were representative of those derived from cen-
sus data, instances where (i) national household surveys
were undertaken in the same year or within one year of
a national census and (ii) census microdata samples and
the full census that each was derived from were collated
and statistical comparisons undertaken, which showed
consistent and strong correlations (Additional file 1:
Protocol S1).
Once datasets on numbers and proportions of individ-

uals by age and sex had been collated for as many
subnational units as available within the last two decades,
using sample weights where applicable to household sur-
veys, these were matched to corresponding GIS datasets
showing the boundaries of each unit. Africa-wide GIS-
linked data on proportions of individuals by age and sex
and by administrative unit were created for as close to
2010 as was available (Figure 1, further datasets are pro-
vided in Additional file 1: Protocol S1).
Subnational and urban growth rates, projections, and
adjustments
The production of spatial population datasets for Africa
has previously relied on simple interpolation between
census-derived timepoints where available or, more com-
monly, the application of UN Population Division
national-level growth rate estimates [27]. For 45 of the 50
countries in mainland Africa plus Madagascar, subnational
growth rates derived from either censuses or official na-
tional estimates were obtained (see Additional file 1:
Protocol S1 for details). Additionally, separate growth
rates for urban and rural areas nationally were obtained
for those countries and time periods for which subnational
growth rate data were not available [40]. Finally, estimated
population sizes for named African cities [40], and the
urban extents dataset used in the construction of the Glo-
bal Rural Urban Mapping Project (GRUMP) [26] were
obtained. The urban extents matching those African cities
for which individual population totals are estimated in the



Figure 1 Spatial demographic datasets for mainland Africa and Madagascar. (a) The estimated proportion of children under 5 years old
subnationally; (b) the estimated proportion of women of childbearing age subnationally; (c) the Africa-wide 1km spatial resolution gridded
dataset of numbers of children under 5 years old in 2010, with close-ups showing 100m spatial resolution detail for southern Ghana and
Luanda, Angola.
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UN World Urbanization Prospects [40] were identified,
and the totals for 2000-2015 matched up.

Gridded population dataset production
The GIS unit-linked age and sex subnational proportions
dataset described above was used to adjust the existing
AfriPop 2010 spatial population datasets [31], to pro-
duce estimates of the distributions of populations by sex
and five-year age group across Africa in 2010. The
datasets were then adjusted to ensure that national popu-
lation totals by age group, specific city totals and urban/
rural totals matched those reported by the UN [27,40]. For
the analyses outlined in the remainder of this paper, the
summation of the datasets representing males and females
in the 0-5 year age group was undertaken to produce a
2010 distribution dataset of children under 5 years old,
and the summation of datasets representing females in the
15-49 year age groups was undertaken to produce a 2010
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dataset of women of childbearing age. The application of
subnational growth rates to produce 2000, 2005, and 2015
datasets is described in Additional file 1: Protocol S1.

Quantifying effects of spatial population dataset on
health metrics
To examine the effects on health and development indi-
cators through use of the new subnational characteriza-
tions of children under 5 and women of childbearing age
compared to undertaking national-level age adjustments
using the UN data [27], two sets of illustrative analyses
were undertaken. Firstly, Africa-wide estimates of the
number of children under 5 years old residing in different
Plasmodium falciparum malaria prevalence classes were
calculated, and secondly, estimates of the number of
women of childbearing age residing at different travel times
from the nearest major settlement (population >50,000)
across Africa and nearest health facility for countries
with open access geolocated datasets of facilities were
estimated. In each case the focus was on the size of the
change in output metrics through accounting for demo-
graphic spatial heterogeneity, rather than the estimates
produced and their fidelity.
One component of MDG 6 is an aim to halt and begin

to reverse the incidence of malaria [1], with targets focused
on those under 5 years of age, upon whom the greatest
burden from the disease falls. To assess achievement of
these targets, and the derivation of malaria metrics in gen-
eral, maps of malaria prevalence are increasingly being
used in combination with spatial population datasets to es-
timate numbers at risk and burdens (e.g.[5,6,41,42]). The
Malaria Atlas Project (www.map.ox.ac.uk) has recently
published a mapped distribution of the intensity of P. fal-
ciparum transmission in 2010 based upon infection preva-
lence among children aged 2 to 10 years (PfPR2-10) [5].
Here, the estimated distribution of prevalence by classes
that have been proposed in the selection of suites of inter-
ventions at scale to reach control targets at different time
periods [43,44] (Figure 2a) was used to extract estimated
numbers of children under 5 years old per country residing
in these different prevalence classes from (i) the AfriPop
2010 population dataset [31] adjusted to represent children
under 5 using UN national proportion estimates [27] as de-
scribed above, and (ii) the dataset of the 2010 population
under 5 constructed from subnational data described
above. For both datasets, national population totals were
adjusted to match UN reported numbers [27] to ensure
that any differences seen in numbers at risk were due solely
to the addition of subnational information on under-5 pro-
portions. Further details are provided in Additional file 2:
Protocol S2.
Improving access to and for remote populations is an

important priority for many of the MDG targets, such as
those focused on eradicating extreme poverty, achieving
universal primary education, and developing a global
partnership for development [1]. Moreover, each health-
related goal is dependent upon accessing populations to
provide interventions, principally delivered through
health facilities, and the difficulty in traveling to these fa-
cilities has been consistently highlighted as a barrier to
treatment in rural populations, particularly in maternal
health [45,46]. The measurement of accessibility or “re-
moteness” of populations is therefore of importance in
measuring progress toward achieving these goals, and
increasingly, approaches based on GIS-derived travel
times are being applied [45-51]. A recently developed
continent-wide travel time dataset [52,53] was used here
to map those regions estimated to be greater than five
hours from the nearest settlement of population size
greater than 50,000. This dataset was used as an illustra-
tive proxy for health system access, since reliable
continent-wide datasets on health facility locations do
not currently exist. To demonstrate the size of the varia-
tions achieved when using actual health facility data, for
eight countries with open-access datasets of health facil-
ity locations (Additional file 2: Protocol S2), maps
representing estimated travel times to the nearest facil-
ities were constructed following previous approaches
[50-55] (Additional file 2: Protocol S2). The accessibility
datasets were used to extract estimated numbers of
women of childbearing age per country residing in dif-
ferent travel time classes from (i) the AfriPop 2010
population dataset [31] adjusted to represent women of
childbearing age using UN national proportion estimates
[27] as described above and (ii) the 2010 distribution
dataset of women of childbearing age constructed from
subnational data described above.

Results
Data assembly and risk group distributions
Over a million individual data records were collected
and matched to 20,381 administrative units across the
continent (Figure 1a, Additional file 1: Protocol S1). The
subnational proportions (Figures 1a, 1b) and growth
rates (Additional file 1: Protocol S1) were combined with
existing spatial population datasets [31] and UN country
total estimates [27] as described above to produce high-
resolution age-and sex-structured Africa-wide spatial
population datasets for 2000, 2005, 2010, and 2015
(Figure 1c, Additional file 1: Protocol S1). For compari-
son of the effects of the inclusion of subnational age and
sex structure data on health metrics, the same spatial
population count dataset [31] was combined with UN
Population Prospects national-level data on age and sex
proportions [27], as described above, to produce alterna-
tive high-resolution Africa-wide spatial population
datasets that assumed homogeneity in age and sex struc-
tures across countries.

http://www.map.ox.ac.uk
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The distributions of the proportion of children under 5
at subnational scales (Figure 1a) and women of childbear-
ing age (Figure 1b), show the great differences that exist
on a continental scale between the majority of sub-
Saharan African countries and those higher-income coun-
tries in southern and northern Africa. Moreover, large
variations are also seen within country borders, whether
the proportions are measured at the coarsest subnational
units of administrative level 1 (provincial) or as fine a de-
tail as level 4 (wards in Tanzania). This great heterogeneity
Figure 2 P. falciparum malaria prevalence in Africa and the effects on
prevalence classes for P. falciparum malaria in Africa [5]. (b) The absolute p
residing under the three prevalence classes through changing from using
numbers under 5 years to using the subnational proportion data assemble
numbers of children under 5 years old residing under the three prevalence
produce per grid cell estimates of numbers under 5 years to using the sub
S1). In (b) and (c), data values are only plotted when a transmission class e
in subnational population composition across the contin-
ent is often ignored in the application of existing spatial
population datasets, thus assuming demographic homo-
geneity across countries (e.g. [6,9,10,28,30,37]).
An indication of the size of subnational variation in

the proportion of the population under 5 captured in
the subnational level dataset (Figure 1a) that is missed
through summarization to national levels is highlighted
in Figure 3. The size of this variation is related to the ad-
ministrative unit level of the input data, with those
metrics of accounting for subnational age structure. (a) Predicted
ercentage changes in estimated numbers of children under 5 years old
UN national proportions [27] to produce per grid cell estimates of
d here (Additional file 1: Protocol S1). (c) The changes in estimated
classes through changing from using UN national proportions [27] to
national proportion data assembled here (Additional file 1: Protocol
ncompasses >10% of the population of a country.



Figure 3 Differences between national and subnational summaries of population proportions under 5 years old for African countries.
Comparison of UN national estimates [27] of proportions of the population under 5 years old in 2010 (red dots) against the range of proportions
measured by the subnational datasets collated here (Additional file 1: Protocol S1) shown as boxplots. The solid center line of the boxplot shows
the median values, the box width represents the interquartile range, and the whiskers extend to 1.5 times the interquartile range from the box
(values further away than this are shown as open circles). The administrative unit level of the subnational data used here is shown as a prefix to
the country name on the x-axis.
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countries for which the most spatially detailed age struc-
ture data were available (Tanzania and South Africa)
showing the largest differences between minimum and
maximum estimates of per-unit proportions of residents
under 5. Nevertheless, even for those countries where
subnational data were only available at administrative
unit level 1, differences of +/- 5% from the UN national
estimates are common. Moreover, national estimates are
often reflective of proportions in urban areas, where the
majority of people reside, hiding the extremes that exist
in rural areas, and this is evidenced by the UN estimates
falling outside of the interquartile range of the boxplots
in many cases (Figure 3).

Effects on health metrics
In terms of using cartographic approaches to estimating
the numbers of people in specific age groups either im-
pacted by disease or able to access large settlements and
health facilities, it is clear that the use of subnational
data on age structures can result in substantial differ-
ences in output indicators over simply using national-
level proportions. Figure 2 shows these differences for
each country in estimates of the number of children
under 5 residing under different P. falciparum malaria
prevalence classes. The simple use of national level age
structure adjustments for estimates of numbers within
different age groups at risk of P. falciparum malaria, as
undertaken in many recent studies, can result in some
estimates being nearly 100% different from those obtained
using more detailed data that capture subnational demo-
graphic variations, with close to half of countries exhibiting
absolute differences greater than 10% (Figure 2b). For small
countries, such as Guinea-Bissau, this translates to esti-
mates changing by only a few thousand people, whereas
for more populous countries, such as Nigeria, this results
in many millions of children changing classes (Figure 2c).
Such trends are also seen when quantifying travel times to
major settlements and health facilities for women of child-
bearing age (Figure 4). At a continental scale, estimates of
numbers residing more than five hours from a large settle-
ment are greater than 10% different for half of the coun-
tries if an assumption of age structure homogeneity across
the country is applied, compared to accounting for the
subnational variations that exist (Figure 4a). Further, simi-
lar findings are evident when estimating numbers of
women of childbearing age residing at different travel times
from health facilities (Figure 4b), emphasizing the impact
that spatial demographic heterogeneity has upon the meas-
urement of health facility access for vulnerable popula-
tions. For six of the eight countries examined, if the
proportion of the population that women of childbearing
age make up is assumed to match national estimates [27]
across the country, then the numbers residing at travel
times of more than an hour from the nearest health facility
will be consistently underestimated (Figure 4b) due to
subnational variations in age and sex structures. For



Figure 4 The effects of accounting for subnational age structure on estimates of travel times to settlements and health clinics. (a) The
absolute percentage changes in estimated numbers of women of childbearing age residing greater than five hours from the nearest settlement
of population size larger than 50,000 people through changing from using UN national proportions [27] to the subnational data assembled here
(Additional file 1: Protocol S1). The inset map shows those areas over five hours from the nearest settlement of population size greater than
50,000 in red. (b) The percentage changes in estimated numbers of women of childbearing age residing at different travel times from their
nearest health facility for eight countries through changing from using UN national proportions [27] to the subnational data assembled here
(Additional file 1: Protocol S1). The inset map shows the modeled travel times to health facilities in Liberia using the same coloring as the
bar plot.
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Namibia and Niger, the two most sparsely populated coun-
tries, the reverse is true.

Discussion
The assessment of progress toward meeting the MDGs will
be measured through national-level indicators [1] that can
mask substantial inequalities across nations [12,18,56]. The
development of cartographic approaches to transforming
georeferenced data on health and development metrics into
valuable spatial datasets is opening opportunities for quan-
titative assessments of these inequalities, the targeting of
interventions and measurement of progress toward the
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MDGs, but demographic spatial datasets to support such
efforts remain reliant on coarse and outdated input data for
accurately locating risk groups.
While high-resolution spatial data on population distri-

butions in resource poor areas are now becoming available
(e.g., www.afripop.org, www.asiapop.org, www.census.gov/
population/international/data/mapping/demobase.html),
comprehensive and contemporary subnational informa-
tion on the demographic attributes of these populations
remain scattered across national statistics office reports
and household surveys [19]. Here approaches to combin-
ing these publicly available disparate datasets are
presented, enabling the production of Africa-wide datasets
depicting age and sex compositions at subnational scales.
The datasets and analyses highlight the importance of ac-
counting for subnational demographic variations in deriv-
ing health and developments metrics. Both the large
subnational variations in age and sex population structures
that are evident (Figures 1 and 3), and the resulting impacts
that these have on metric derivation (Figures 2 and 4)
underline the need to obtain and utilize the most spatially
refined data available.
The ranges of proportions of the population that is

under 5 years old seen when comparing the subnational
versus national-level estimates (Figure 3) highlight the
need for more spatially detailed demographic data to
better capture these variations. Differences of +/-5% in
the proportions are common, and the spatial configur-
ation of those areas that are substantially greater or less
than the UN estimates in relation to the spatial distribu-
tion of disease risks or access, as seen in Figures 2 and
4, can have major implications on the derivation of indi-
cators. Whilst the distributions of predicted malaria risk
or travel times are mapped as continuous variables at
1km spatial resolution, if the population distribution
data used to derive numbers at risk is based upon an as-
sumption of age and sex structure homogeneity through
national-level estimates, it is clear that this can result in
some significant inaccuracies that consistently remain
unacknowledged. Clear urban and rural differences
(Additional file 1: Protocol S1) also highlight the need
for accounting for such variations, and when indicators
such as malaria risk or access to health facilities that
vary substantially by urban-rural divides are being esti-
mated, the large effects of this are evident (Figures 2 and
4). For example, in Kenya some of the most rural areas
have the highest malaria transmission, the largest travel
times to health facilities, and the highest proportions of
children under 5/lowest proportions of women of child-
bearing age. Thus, accounting for all three of these fac-
tors subnationally compared to assuming a homogenous
demographic structure results in substantial differences
in outcome metrics (Figures 2 and 4). As funding for
health and poverty-related mapping and the number of
new cartography projects (e.g. [57-60]) continues to
grow, the need for accurate spatial population distribu-
tion data will also grow if denominator-reliant metrics
are required.
While accounting for subnational heterogeneity in

population attributes likely results in significant improve-
ments in the accuracy of health metrics, it is clear that
many sources of uncertainty and error remain. All of the
census and survey-based data used here are subject to
various sources of error and bias, many of which have
been well documented [61]. Indigenous groups, informal
settlements, places experiencing civil unrest, and refugees
are often entirely unsampled, either because of political
biases, missing sampling frames, or prohibitive difficulties
in carrying out a survey. Uncertainties also arise over com-
parisons being made between primarily census-based na-
tional estimates of age/sex proportions from the UN
Population Prospects [27] and the household survey-
derived subnational age/sex proportions used here for
some countries. Differences between the way these pro-
portions were measured contributes to uncertainties in
comparisons between outcome health metrics, though
strong correlations between the household survey-derived
age structures and those derived from census data suggest
that such differences may be small (Additional file 1:
Protocol S1). Further, the underlying AfriPop population
datasets contain uncertainties [31], while for some coun-
tries, the input data used here remains outdated and
coarse (Figure 1, Additional file 1: Protocol S1). Like most
other population parameters reported for administrative
polygons, the age and sex proportions are also subject to
the modifiable areal unit problem [62]. Discretising (by
gridding) a phenomenon that is continuous (or in this
case, varying at a far higher resolution) is an arbitrary
process. In the case of the datasets presented here, whilst
the precision with which heterogeneities in vulnerable
population distributions are mapped is improved over
simple national adjustments, we are still faced with a
dataset containing one set of values for Libya and thou-
sands for Tanzania. There is therefore a need to more
rigorously quantify the uncertainties inherent in spatial
demographic datasets. The advancement of theory, in-
creasing availability of computation, and growing recogni-
tion of the importance of robust handling of uncertainty
have all contributed to the emergence in recent years of
new, sophisticated Bayesian approaches to the large-scale
modeling and mapping of disease [4,7,25], but such
methods have yet to cross over to the spatial demographic
databases with which such maps are used. The regular
availability of new national household surveys means that
more contemporary data is continually becoming available
to aid in updating and improving the accuracy of the
datasets presented here, potentially through automated
systems that can rapidly adapt to new incoming data and

http://www.afripop.org/
http://www.asiapop.org
http://www.census.gov/population/international/data/mapping/demobase.html
http://www.census.gov/population/international/data/mapping/demobase.html
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integrate them into the output spatial datasets, alongside
robust methods to account for temporal differences [63].
The international focus on health-related goals coupled

with a growing trend in research and funding for carto-
graphic approaches to deriving metrics are increasing needs
for spatial demographic data of similar scope for use in esti-
mating denominator sizes and characteristics of popula-
tions at risk. The importance of accounting for subnational
demographic variations in deriving health metrics is clear
and the size of the differences that exist between ignoring
subnational variations in age and sex structures, compared
to accounting for them, is large enough to make the differ-
ence between success and failure in meeting a MDG. Here
we have shown that sufficient data exists to produce a
continent-wide subnational picture of demographic attri-
butes and the mapping of key risk group distributions.
Gridded age-structured datasets for 2000, 2005, 2010, and
2015 are freely available to download from the AfriPop pro-
ject website (www.afripop.org) and will be regularly
updated as new data become available. Similar datasets for
Asia and Latin America will soon be made available
through the AsiaPop (www.asiapop.org) and AmeriPop
(www.ameripop.org) projects.

Additional files
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