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The effects of spatial population dataset choice
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Abstract

Background: The spatial modeling of infectious disease distributions and dynamics is increasingly being
undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where
risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human
population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different
modeled human population distribution datasets are available and widely used, but the disparities among them
and the implications for enumerating disease burdens and populations at risk have not been considered
systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P.
falciparum malaria as an example.

Methods: The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of
different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population
numbers within each class were calculated for each country using four different global gridded human population
datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and
GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African
countries where census data were available at a higher administrative-unit level than used by any of the four
gridded population datasets.

Results: The estimates of PAR based on the datasets varied by more than 10 million people for some countries,
even accounting for the fact that estimates of population totals made by different agencies are used to correct
national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases,
these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-
level assessments suggested that none of the datasets was consistently more accurate than the others in
estimating PAR. The sizes of such differences among modeled human populations were related to variations in the
methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country
to country within the spatial population datasets.

Conclusions: Detailed, highly spatially resolved human population data are an essential resource for planning
health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes
related to public health. However, our results highlight that for the low-income regions of the world where disease
burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in
uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and
spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population
distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of
contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial
population dataset need to acknowledge the uncertainties inherent within them and consider how the methods
and data that comprise each will affect conclusions.
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Background
Defining the extent of infectious diseases as a public
health burden and their distribution and dynamics in
time and space are critical to disease monitoring, con-
trol, and decision-making. The epidemiology of many
diseases makes surveillance-based methods for estimat-
ing populations at risk and disease burden problematic
[1-3], while spatial heterogeneity in human population
distribution can produce significant effects on transmis-
sion [4,5]. Cartographic and spatial modeling approaches
have proven to be effective in tackling these factors
[6-8]. Such approaches can help characterize large-scale
patterns of disease spread to evaluate intervention
impact [4] and produce globally consistent measures of
morbidity of known fidelity, often the only plausible
method in many African countries where surveillance
data are incomplete, unreliable, and inconsistent
[1,9,10]. However, any approach that requires the use of
modeled disease rates or dynamics to estimate risk
requires reasonable information on the distributions of
resident populations. Where risks and the spread of dis-
eases are heterogeneous in space, population distribu-
tions and counts must be resolved to reasonably high
levels of spatial detail.
National census population data have often been

represented as continuous gridded population distribu-
tion (or count) datasets through the use of spatial inter-
polation algorithms. Four differing approaches to the
interpolation of census data have been used to create
four different global population distribution databases at
spatial resolutions of finer than 1 degree, each of which
has been used in epidemiological studies. These are
LandScan [11], the Gridded Population of the World
(GPW) [12], the Global Rural Urban Mapping Project
(GRUMP) [13], and the United Nations Environment
Programme (UNEP) Global Population Databases [14].
Features of each dataset are outlined in Table 1, their

full extents are mapped in Additional file 1, Figure S1,
and each is discussed in more detail below.
Population census data are the core inputs to spatial

population databases and, for many countries, contem-
porary census data collected at a high administrative-
unit level exist to facilitate detailed and precise popula-
tion mapping. For the majority of low-income countries
of the world, however, spatially detailed, contemporary
census data to facilitate such detailed mapping do not
exist. This is especially true for much of Africa. Census
data used for the production of global products are
more than a decade old in 38 of 56 African countries
and, at administrative boundary levels, just one or two
levels finer than national level in 44 countries [15]. The
poor quality of the inputs propagates differently through
the four modeled human population distributions, as
contrasted by maps of the different distributions from
the southeastern United States (Figure 1) and for central
Africa (Figure 2). The population distributions for the
southeastern United States quantified by the GPW,
GRUMP, and LandScan datasets appear very similar,
where highly resolved census tract-level count data pro-
vide the main input. Such detailed representations often
prompt misconceptions that population distribution is
now known and mapped accurately for the entire world
[4,16]. The same population density datasets for central
Africa highlight the differences, however, where input
census data vary substantially in quality (Figure 2). The
differing approaches to the spatial interpolation of
poorly resolved census data produce very different spa-
tial configurations of population.
Each of the four spatial population datasets has been

used extensively in epidemiological studies during the
past two decades (Table 2). Different authors have used
different population datasets for the same purpose, yet
the accuracies, variations, and effects upon results that
this choice entails have yet to be examined. Applications

Table 1 Gridded population datasets and their characteristics

Dataset Year(s)
represented

Spatial
resolution

Input data used Data source for
national pop total
adjustments

Source

LandScan 2008 30
arcseconds
(~1 km)

Census, land cover, elevation,
slope, roads, populated areas/
points

CIA [23] [11]; http://www.ornl.
gov/sci/landscan/

Gridded Population of
the World (GPW)

1990/1995/
2000/2005/
2010/2015

2.5
arcminutes
(~5 km)

Census, water bodies (for
masking)

UNPD [22] [12]; http://sedac.ciesin.
columbia.edu/gpw/
global.jsp

Global Rural Urban Mapping
Project (GRUMP)

1990/1995/
2000

30
arcseconds
(~1 km)

Census, populated areas,
water bodies (for masking)

UNPD [22] [13]; http://sedac.ciesin.
columbia.edu/gpw/
global.jsp

United Nations Environment
Programme (UNEP) Global
Population Databases

2000 2.5
arcminutes
(~5 km)

Census, populated points,
roads

UNPD [22] [14]; http://na.unep.net/
siouxfalls/datasets/
datalist.php
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Figure 1 Population distribution for the southeast United States as mapped by three different datasets. The datasets shown are (A) GPW
(B) GRUMP (C) LandScan. The UNEP Global Population Databases product is not represented here as it does not cover the USA. The values
shown are estimates of persons per grid square.

Figure 2 Population distribution for central and east Africa as mapped by four different datasets. The datasets shown are (A) GPW (B)
GRUMP (C) LandScan (D) UNEP, and the values shown are estimates of persons per grid square.
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have involved estimating numbers of clinical cases,
spread modeling, risk mapping, quantifying the effects
of urbanization, and studying diseases ranging from den-
gue and yellow fever to HIV and leprosy. The most
widespread use of gridded population datasets in an epi-
demiological context has been in the study of malaria
(Table 2) with a variety of purposes (Additional file 1,
Table S1). All four global datasets used to derive esti-
mates have been used to estimate populations at risk
(PAR) of malaria, forming a fundamental metric for
decision-makers at national and international levels
[9,17]. Here, to illustrate the effects of spatial population
dataset choice in an applied epidemiological setting, we
undertake a set of analyses to quantify the spatial varia-
tion and sizes of absolute and relative differences in
PAR of P. falciparum malaria that can be obtained
through the use of differing population datasets. We
then discuss how these differences arise, their likely
translation to other disease systems, and approaches to
dealing with the uncertainties in large-scale spatial
population datasets.

Methods
Assessment of the effects of spatial population data-
set choice on estimates of populations at risk of

P. falciparum is undertaken here through three steps: (i)
gathering existing spatial population datasets; (ii) over-
laying P. falciparum transmission maps onto each popu-
lation dataset, extracting populations at risk and
quantifying the range of estimates achievable; (iii) and
assessing which population modeling method results in
more accurate estimates of populations at risk in three
test countries where population distribution is known
with greater precision than the input data used in con-
struction of the datasets being tested. The datasets and
methods used for each of these steps are described in
detail in the following sections.

Global spatial population datasets
Analyses here focus on the four datasets most com-
monly used in disease-related studies, and principally on
LandScan and GRUMP, the most contemporary and
widely used datasets (Table 2). These two datasets have
become more widely used in epidemiology due to their
finer spatial resolution than GPW and UNEP, the fact
that UNEP has not been updated for more than a dec-
ade, and the inclusion of urban extents in GRUMP that
improves mapping precision over GPW [18]. Inputs to
and outputs of the four datasets differ (Table 1, Figures
1-2). We do not consider here coarse datasets (1 degree

Table 2 Disease-related studies that have utilized large area gridded population datasets

Disease Application Population map used [Reference]

Malaria Populations at risk GPW [47-52], LandScan [53,54], UNEP [55], GRUMP [24,25,28,30-32,56-58]

Clinical cases GPW [59], GRUMP [8]

Intervention coverage GRUMP [60]

Funding coverage GRUMP [57,61]

Risk mapping GPW [62-64], UNEP [65], GRUMP [66]

Infection movements GRUMP [29,30]

Urbanization effects GPW [67], GRUMP [15]

Hookworm Populations at risk GPW [68,69]

Influenza Epidemic modeling GPW [70-73], LandScan [7,74,75], GRUMP [76]

Risk mapping LandScan [77,78]

Yellow fever Populations at risk GRUMP [79]

Dengue Populations at risk GRUMP [79]

Risk mapping USGS [21], LandScan [80,81]

Filariasis Populations at risk UNEP [82]

Helminths Populations at risk GPW [52,83], UNEP [84]

Bovine TB Risk mapping LandScan [85,86], GPW [86]

Trypanosomiasis Risk mapping UNEP [87]

Onchocerciasis Populations at risk GPW [88]

Leprosy Risk mapping GPW [89]

HIV Prevalence analyses LandScan [90]

General Trends in emerging diseases GPW [91]

Health of schoolchildren UNEP [92]

GPW = Gridded Population of the World, GRUMP = Global Rural Urban Mapping Project, UNEP = United Nations Environment Programme Global Population
Databases, USGS = United States Geological Survey Population datasets.
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spatial resolution or coarser), such as that outlined by Li
et al [19], that have occasionally been used in disease-
related studies [20,21]. Table 1 provides references and
Web links for detail on each spatial population dataset,
and each is shown in Additional file 1, Figure S1.
In constructing the global population datasets, the use

of census counts provided by national statistics offices
and resulting intercensal growth rates lead to a patch-
work of datasets, methods, and total national counts
that are different from widely used and standardized
estimates made by international agencies [22,23]. Thus,
each product is adjusted to match national totals esti-
mated by one of these agencies for the product year in
question. LandScan adjusts its totals to match those esti-
mates made by the Central Intelligence Agency (CIA)
[23], while the remaining datasets adjust to the United
Nations Population Division (UNPD) estimates [22]. Dif-
ferences in estimates made by these different agencies
translate into differences in PAR, numbers in suscepti-
ble, infected, and recovered model groups, and many
other epidemiological measures. Initially, therefore, 2010
national population estimates made by the CIA and
UNPD were obtained and the differences explored.

Assessing variations in global PAR of P. falciparum
malaria
The Malaria Atlas Project has recently published revised
global limits of unstable and stable P. falciparum infec-
tion risk [24] and a modeled, mapped distribution of the
intensity of P. falciparum within the stable margins of
transmission based upon infection prevalence among
children aged 2 to 10 years (PfPR2-10) [25]. In brief, data
on national case reporting, national and international
medical intelligence, climate, and aridity were used to
define conservatively the margins of stable and unstable
P. falciparum transmission [24]. Stable malaria transmis-
sion was assumed to represent a minimum average of 1
clinical case per 10,000 population per annum (pa) in a
given administrative unit. Unstable malaria transmission
was used to define areas where transmission was biolo-
gically plausible and/or had been documented but where
incidence was likely to be less than 1 case per 10,000
population pa. In Africa, this was largely in areas where
aridity limits the survival of larvae and causes desicca-
tion of adult vectors. Finally, no transmission was
assumed where assembled intelligence stated no malaria
risk because (1) national reporting systems had, over
several years, not reported a single P. falciparum clinical
case, or (2) where temperatures were too low for spor-
ogony to complete within the average lifespan of the
local dominant vector species. Within the stable trans-
mission margins, empirical community survey data on
parasite prevalence were assembled and geolocated to

provide the basis for an urban-rural and sample-size-
adjusted geospatial model within a Bayesian framework
to interpolate a continuous space-time posterior predic-
tion of Pf PR2-10 for every 5 × 5 km pixel for the year
2007 [25]. This model also generated classified output
that assigned each pixel to one of four malaria endemi-
city classes: malaria-free or unstable, Pf PR2-10 <5%;
Pf PR2-10 = 5% to 40%; and Pf PR2-10 >40% (Figure 3).
These classifications of stable transmission correspond
to ranges of Pf PR that have been proposed in the selec-
tion of suites of interventions at scale to reach control
targets at different time periods [26,27].
The transmission classes mapped in Figure 3 have

been used in previous studies to estimate PAR using the
GRUMP dataset [8,25,28-30]. Here, we examine the dif-
ferences that can be obtained using alternative popula-
tion datasets (Table 1). Though there exist more
appropriate measures for calculating PAR that are con-
sistent with the P. falciparum malaria endemicity sur-
face and that integrate the uncertainty inherent in the
PfPR2-10 estimates [31], here we compare geographical
information system (GIS) overlays as done by the vast
majority of previous studies (Table 2).
We obtained the population count dataset (Table 1)

closest in time, at the time of writing, to 2007, the year
represented by the P. falciparum endemicity class map.
For LandScan, this was the 2007 version. For GPW3, this
was the 2005 version. For GRUMP, this was the 2000
beta version. And for UNEP, this was the 2000 product.
GPW3, GRUMP, and UNEP were thus projected forward
to 2007, applying national, medium variant, intercensal
growth rates by country [22], using methods described
previously [18], and undertaken in many previous PAR
estimation studies [8,18,24,25,28-32]. The PfPR2-10 trans-
mission classes were overlaid onto the four population
datasets, and per-country PARs for each class were
extracted for analysis.
As described above, the population datasets outlined

in Table 1 adjust their national totals to estimates made
by differing agencies. Thus, differences in PAR estimates
reflect both these adjustments to differing totals, as well
as differences in the census unit disaggregation methods.
To isolate and examine the effect of different disaggre-
gation methods, population totals were linearly adjusted
to common totals (in this case, those defined by the
UNPD [22]) maintaining the endemicity class propor-
tions extracted. Thus, two sets of analyses were underta-
ken: those that examined PAR differences based on the
unadjusted native products, as undertaken in epidemio-
logical studies to date (Table 2), and those that exam-
ined PAR differences based on adjusting national
populations to a common total to examine the effect of
differing census data disaggregation approaches.
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National-level assessments of PAR estimates
Validation and accuracy assessment of high-resolution
population data is challenging because few independent
data are generally available for testing or ground-truth-
ing. Uncertainties creep into the estimates due to errors
in the inputs, resulting in input-dependent uncertainty,
and the subjective nature of the estimation or modeling
process, causing process-dependent uncertainty.
More detailed assessments of PAR of P. falciparum

malaria variation were possible, however, for three Afri-
can countries where data on census counts or official
population estimates were reported at a higher adminis-
trative-unit level than those used in the construction of
each of the four gridded population datasets: Mali,
Namibia, and Tanzania. Data on population counts from
the 2009 Mali census at commune level (administrative
level 3) were obtained from the Institut National de la
Statistique du Mali and matched to administrative-unit
data from the Global Administrative Areas Project
(http://www.gadm.org). The global population datasets
used cercle-level (administrative level 2) data for Mali.
For Namibia, 2001 census data matched to enumeration
area (administrative level 4) boundaries were obtained
from the Namibian Ministry of Health and Social Ser-
vices and were substantially more detailed than the con-
stituency level (administrative level 2) data used in the
construction of the LandScan, GPW, GRUMP, and
UNEP datasets. Finally, 2002 census data at ward level
(administrative unit level 3) for Tanzania were down-
loaded from the International Livestock Research Insti-
tute (http://64.95.130.4/gis/search.asp?id=442), a level
finer than that used in the construction of the global

population datasets. Additional file 1, Figure S3 shows
the administrative boundaries of the census data for
each of the three countries.
Each country spans two or more P. falciparum trans-

mission classes (Additional file 1, Figure S3), providing a
good test of how each existing dataset had quantified
PAR in a range of transmission settings and between
classes. Moreover, both the input census or estimate
data used in construction of the existing population
datasets and the data for assessment for the three coun-
tries cover a wide range of administrative levels and
average spatial resolutions (ASRs).
For each country, the detailed population data were pro-

jected forward to 2007 to match the malaria data, using
the same growth rates described in the previous section.
PAR estimates from the census data were then calculated
by overlaying the P. falciparum malaria class map onto the
detailed census data and calculating the proportion of each
class covering each unit. Populations were assigned to
each class based on these proportions. Given the small
size of the units in most of the detailed census data, the
vast majority of units belonged wholly to one class. The
resulting PAR estimates represented refined estimates of
PAR for each of the three countries that could be com-
pared to those derived from GRUMP, GPW, LandScan,
and UNEP. These comparisons were undertaken through
calculation of root mean square errors (RMSEs) between
the per-unit PARs in the fine-resolution datasets and
those estimated by the four spatial population datasets. As
in the previous section, analyses were undertaken on the
three datasets both adjusted to common national totals
[22] and those left unadjusted.

Figure 3 The spatial distribution of P. falciparum malaria PfPR2-10 predictions stratified by endemicity class. They are categorized as
low risk PfPR2-10 <5%, light red; intermediate risk PfPR2-10 = 5% to 40%, medium red; and high risk PfPR2-10 >40%, dark red. The map shows
the class to which PfPR2-10 has the highest predicted probability of membership. The rest of the land area was defined as unstable risk
(medium gray areas, where PfAPI = 0.1 per 1,000 pa) or no risk (light gray).
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Results
Estimates of national population totals
The results of comparing national population totals esti-
mated by the UNPD (as used for GPW, GRUMP, and
UNEP GRID) with those estimated by the CIA (as used
in LandScan) are outlined in Figure 4. The map shows
the relative effects on population totals, in percentage
terms, of changing from a population dataset adjusted
to UNPD totals to one adjusted to CIA totals. The dif-
ferences that can result from such adjustments are evi-
dent when considering the extreme case of Angola,
where the UNPD estimates a total 2010 population of
18,993,000, while the CIA estimates just 13,068,161, a
reduction of 31%. Elsewhere, differences are smaller, but
a large number of countries show absolute differences of
greater than 5%. Moreover, a clear pattern is evident,
with estimates for low-income countries, particularly
those in sub-Saharan Africa, varying by greater amounts
than for the higher-income regions. For countries
defined as “least developed” [22], the average absolute
difference is 6.2%, which is significantly different (p <
0.05) from the average absolute difference of 4.3% for
the remaining countries.

Variations in P. falciparum PAR
At global and continental scales, Table 3 shows that the
choice of population dataset makes only relatively small
differences in the estimated proportions at risk, with
GRUMP and LandScan estimating roughly similar num-
bers (Additional file 1, Table S2 shows the estimated num-
bers at risk using all four population datasets, and
Additional file 1, Table S3 shows concordance correlation
coefficients [33] for the per-country PAR estimates made

by each of the four datasets). However, these estimates
mask the much more substantial country-scale variations.
Figure 5 summarizes these relative variations (in percen-
tage terms for comparability) in national P. falciparum
PAR using the two most widely used population datasets
in disease studies today, LandScan and GRUMP, adjusted
to common national totals. Additional file 1, Figure S2
shows the results for the unadjusted analyses, and there
were few differences from Figure 5 because a linear adjust-
ment of population totals results in minimal effects on
proportions of the total population residing in different
transmission zones. The largest percentage differences
occur for the smallest countries, as expected, as relatively
small differences in PAR translate to large percentage dif-
ferences in these cases. Many larger countries, especially
in sub-Saharan Africa, also display differences in PAR esti-
mates for certain classes of near to or greater than 5%.

Figure 4 The differences between national population totals for 2010 estimated by the UNPD and the CIA. The differences are shown as
a percentage change from national population totals estimated by the UNPD.

Table 3 Total estimated populations at risk (PAR) of P.
falciparum malaria in each class by region and in total
for the GRUMP and LandScan population datasets

PAR (millions)

Americas Africa+ CSE Asia Global

Unstable LandScan 50.138 18.266 974.086 1042.49

GRUMP 50.044 21.594 947.371 1019.009

<5% LandScan 40.312 116.339 601.344 757.995

GRUMP 40.563 114.313 602.923 757.8

5-40% LandScan NA 193.26 71.504 264.764

GRUMP NA 197.349 75.214 272.563

>40% LandScan NA 350.644 6.124 356.767

GRUMP NA 346.607 6.712 353.319

GRUMP = Global Rural Urban Mapping Project.
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These include Angola, Gabon, Liberia, Mozambique,
Mauritania, Somalia, Tanzania, and Yemen. Moreover,
though relative differences in PAR achievable through
switching between LandScan and GRUMP for a large
country such as Nigeria are only about 2% for the two
transmission classes covering the country, in absolute
terms, this translates to differences of more than 3 million
people. Figure 6 plots these differences in absolute terms
for the PfPR >40% class, through using all four population
datasets described in Table 1 and unadjusted to common
national totals to highlight the kinds of variations that past
studies (Table 2) would have achieved through considering
alternative population datasets. For clarity, Nigeria and the
Democratic Republic of the Congo are not shown, but the
graph highlights again how estimates of those residing in
the highest P. falciparum transmission zones differ by
many millions for countries with the highest numbers at
risk.

National-level assessments of PAR estimates
Results of the adjusted national-level assessments in
Table 4 suggest that none of the modeling approaches

used is consistently more accurate than the others.
LandScan or GRUMP, however, which are more recent
products and resolved to finer spatial resolutions than
GPW and UNEP GRID, were the closest to the fine-
resolution PAR estimates in each case. An older, more
comprehensive assessment found GRUMP to be a more
accurate representation of population distribution for
Kenya [18], but in this case, GRUMP and GPW utilized
a higher administrative-unit level of census data as input
compared to UNEP and LandScan. The results of the
analyses on the unadjusted datasets are presented in
Additional file 1, Table S4, with few differences from
Table 4 because a linear adjustment of population totals
results in minimal effects on proportions of the total
population residing in different transmission zones.

Discussion
The use of global positioning systems (GPS) and GIS in
disease surveys and reporting is becoming increasingly
routine, enabling a better understanding of the spatial
epidemiology of diseases. In turn, the increased avail-
ability of spatially referenced epidemiological data is

Figure 5 Variations in estimates of population at risk of P. falciparum achievable using LandScan and GRUMP. Here, the LandScan and
GRUMP datasets were adjusted to ensure that national population totals matched those provided by the UN [22]. The difference in PAR
estimates are presented as a percentage of total national population (UN estimates), and shown for (A) Africa+, (B) CSE Asia, and (C) the
Americas. The ISO country abbreviation for country name is used (http://www.iso.org/iso/english_country_names_and_code_elements).
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driving the rapid expansion of disease mapping and spa-
tial modeling methods, which are becoming increasingly
detailed and sophisticated, with rigorous handling of
uncertainties built in. This expansion has not been
matched by advancements in the development of spatial
datasets of human population distribution that so often
accompany disease maps or spatial models in analyses.
Since the initial development of global spatial popula-

tion databases in the 1990s, they have enjoyed wide

application across multiple fields of research and appli-
cation [13,34], and in the late 1990s were first applied
for estimating populations at risk of disease (Table 2).
Since then, the use of spatial population datasets in epi-
demiological studies has become widespread. Table 2
shows how the different population datasets analyzed
here have been used for undertaking similar analyses,
yet few studies justify their choice of dataset, and none
has assessed the effects of changing to an alternative

Figure 6 Plot showing the range of estimates of PAR achievable using four different population datasets. The plot shows the mean (red
circle) and range (black bar) of estimates of populations at risk of PfPR >40% in 2007 achievable using the four population datasets outlined in
Table 1. Nigeria (Maximum: 117,672,000, Mean: 112,564,250, Minimum: 101,283,000) and the Democratic Republic of the Congo (Maximum:
56,767,900, Mean: 52,775,275, Minimum: 44,555,900) are not shown here, as their PARs are significantly larger than the other countries. The ISO
country abbreviation for country name is used (http://www.iso.org/iso/english_country_names_and_code_elements).

Table 4 Error statistics for comparison of P. falciparum populations at risk (PAR) derived from spatial population
datasets versus detailed census data

LandScan GPW GRUMP UNEP

RMSE CCC RMSE CCC RMSE CCC RMSE CCC

Mali 83908 0.9997984 128802 0.9995382 58910 0.9999026 115777 0.999629

Namibia 24868 0.997234 30581 0.9956934 43900 0.9907193 33615 0.9949944

Tanzania 4340872 0.87304 4106729 0.8929462 3514209 0.9195392 4718404 0.8530245

Root mean square error (RMSE) and concordance correlation coefficient (CCC) [33] statistics are shown for comparison of P. falciparum PAR estimates derived
from the four spatial population datasets against the estimates derived from the detailed census data for three countries. The lowest RMSEs and highest CCCs for
each country are in bold. Here, the spatial population datasets were adjusted to ensure that national population totals matched those provided by the UN [22].
GPW = Gridded Population of the World, GRUMP = Global Rural Urban Mapping Project, UNEP = United Nations Environment Programme Global Population
Databases.
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dataset on results. Results here show that, in the context
of an endemic, vector-borne disease, the choice of spa-
tial population dataset can have substantial effects on
estimates of populations at risk of disease, particularly
for low-income countries where estimates of national
population totals are uncertain, census data used in
dataset construction are often outdated and of coarse
resolution, and national totals are adjusted to differing
sizes. Our results also show that assessing which dataset
to use remains a difficult task, with tests here showing
that none of the datasets was consistently more accurate
than others in estimating PAR of P. falciparum malaria
for the three test countries.
The results presented are focused on the quantifica-

tion of PAR of P. falciparum malaria. However, it is
clear that the implications translate to other types of
malaria and other endemic, vector-borne diseases, espe-
cially those for which spatial population data are already
being used to derive population at risk estimates
(Table 2). Moreover, as funding for disease mapping
continues to grow, the need for accurate spatial popula-
tion distribution data will also grow if denominator-
reliant metrics are required. The effect size of spatial
population dataset choice on the outputs of spatial mod-
els of directly transmitted disease spread will be a func-
tion of the aims of the modeling exercise. However, in
any case where spatial population data are used to
derive “synthetic populations,” for instance in those
influenza modeling studies listed in Table 2, there can
be no doubt that running such models on the greatly
differing distributions in Figure 2 would produce differ-
ing epidemiological landscapes and resultant estimated
patterns and timings of spread. Calculating metrics on
exactly how significant an effect the choice of spatial
population dataset used would have on such model pre-
dictions is beyond the scope of this article and requires
further study. However, the uncertainties inherent in the
population datasets are rarely acknowledged and clearly
feed into any outputs.
The levels of uncertainty inherent in the sparse disease

data used, for instance, to construct maps or parameter-
ize epidemic models may be greater than the uncer-
tainty levels that exist within the spatial population
datasets used with them [4,31]. However, the level of
uncertainty in the denominator is rarely considered or
mentioned. The importance of considering this is under-
lined by Figures 4, 5 and 6, where, taking the extreme
case of Angola, changing from using GRUMP to Land-
Scan produces a relative drop of more than 30% in
population size, meaning substantially fewer people at
risk of endemic disease or susceptible to emerging dis-
eases. After accounting for this difference, results here
show that estimates of PAR of P. falciparum malaria for
differing transmission classes can change by a further

6%. The uncertainties that exist in estimating total
populations residing in some nations likely have sub-
stantial implications on estimates of disease risk, burden,
and spread, but these go unacknowledged. The differ-
ence in estimates of the total population of Angola
between the UNPD and the CIA, and the substantial
differences for many other low-income countries, high-
lights that even those nonspatial disease burden esti-
mates reliant on national or per-district denominators
[9,35-37] must be cautious and account for uncertainties
in the denominator. In many low-income countries,
more than 10 years has passed since the last population
census (http://unstats.un.org/unsd/demographic/sources/
census/censusdates.htm, [15]), and significant uncer-
tainty exists regarding how many people reside in them.
Ideally, a definitive answer to the question of which

modeling approach produces superior population distri-
bution mapping accuracy would provide valuable gui-
dance on choosing datasets. Results here, however, show
that obtaining this answer is nearly impossible because
the most detailed data generally are used in construction
of the population datasets, leaving little independent
data for testing. Comparisons with the basic assessments
undertaken for a few countries where more highly
resolved data exist provide inconclusive results. Previous
work has suggested that the level of input census data
remains an important factor [18] and that detailed map-
ping of settlements, where the vast majority of people
live, can also further improve mapping skill [38]. Decid-
ing among the datasets remains challenging, but the
more transparent methodologies, clear documentation
of input data, and provision of a mean geographic input
unit surface for GPW and GRUMP make those datasets
more suited to enabling researchers to understand and
quantify the uncertainties inherent in them.

Improving spatial population dataset construction for
epidemiological purposes
Our results highlight that uncertainty in the locations of
human populations exists to a varying degree across the
world, and that this uncertainty is most pronounced for
low-income countries, especially those in sub-Saharan
Africa. The advancement of theory, increasing availabil-
ity of computation, and growing recognition of the
importance of robust handling of uncertainty have all
contributed to the emergence in recent years of new,
sophisticated approaches to the large-scale modeling
and mapping of disease. In endemic disease mapping,
this has included the use of a special family of general-
ized linear models known as model-based geostatistics
(MBG), generally implemented in a Bayesian framework.
These approaches are enabling the explicit quantifica-
tion of uncertainty associated with disease distributions
to be mapped [31], but such approaches have yet to
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cross over to the demographic databases with which
such maps are used. Figures 4, 5, and 6 demonstrate
that aspects of the uncertainties inherent in existing
population datasets can be quantified. Future work on
spatial population datasets should thus focus on inte-
grating such uncertainties into the methods used for
their construction as a priority.
As discussed, even when the variations in national

total adjustments (Figure 4) are accounted for, substan-
tial variation in PAR estimates deriving from the appli-
cation of differing modeling methods to coarse-
resolution census data are still apparent. Where census
datasets are more detailed, the implications of the
choice of population distribution modeling approach are
reduced. Thus, efforts to improve upon the reliability
and precision of spatial population datasets should also
focus on obtaining the highest level and most recent
census data available. The database behind GPW and
GRUMP likely represents the most comprehensive col-
lection of census counts and other official population
estimates by administrative unit, and full details are
available here: http://sedac.ciesin.columbia.edu/gpw/
spreadsheets/GPW3_GRUMP_SummaryInformatio-
n_Oct05prod..xls
To identify the priority countries for which both more

recent and more detailed population data are required, a
simple index through ranking all countries by year of
most recent census dataset in the GPW/GRUMP data-
base can be created to highlight those with the oldest
data. Further, ranking by population per administrative
unit (PPU) highlights those with the coarsest census
data. These ranks were then summed for each country,
and the top 20 countries in terms of having the oldest
and coarsest resolution population data are shown in
Table 5 (the top 50 are shown in Additional file 1,
Table S5). All the countries listed are either in Africa or
Asia, with the individual columns showing that popula-
tion count data from the 1980s, and at a spatial resolu-
tion where on average more than 1 million people
reside in each administrative unit, are still being used to
estimate diseases risks, burdens, spread, and dynamics.
With the vast majority of human population residing

in settlements, on which increasingly accurate, detailed,
and reliable datasets are becoming available, the accu-
rate mapping of settlements will improve our abilities to
accurately quantify human population distributions.
Moreover, those residing in large settlements face differ-
ing disease risks [39], and settlements are often used to
define patches, nodes, or metapopulations in network-
based epidemic models [4]. Efforts to improve both
population and settlement spatial data have begun
through the launch of a number of projects. The Afri-
Pop project (http://www.afripop.org) aims to provide
detailed and freely available population distribution

maps for Africa, focusing initially on (i) creating a data-
base of more contemporary and finer resolution census
data for sub-Saharan countries, and (ii) mapping settle-
ments across Africa at finer resolution and with greater
precision. The population estimation by remote sensing
(POPSATER) project (http://www.ulb.ac.be/rech/inven-
taire/projets/7/PR4417.html) aims to combine remotely
sensed data with field survey data to improve population
mapping methodologies and create maps of small urban
and rural areas in sub-Saharan Africa. Additionally,
other projects are focused on improving the mapping of
urban areas [40,41] and land cover in general [42,43],
providing valuable data for guiding population mapping
over large areas [38,44]. All of these projects are, how-
ever, disconnected and small in scope, length, and capa-
city. At a time when the mapping of infectious diseases
is garnering increasing donor support, mapping of the
denominator remains poorly funded.
Finally, while great advances in our abilities to quan-

tify population distributions over large areas have been
made, these have been focused solely on the simple enu-
meration of total population numbers residing in grid
cells. The effects of diseases in terms of morbidity,

Table 5 The top 20 priority countries in terms of spatially
referenced population data needs

Rank Country PPU Population data
year

1 Iraq 1,258,000 1985

2 Congo, Democratic Republic of
the

347,000 1984

3 Chad 527,000 1990

4 Syria 1,241,000 1994

5 Libya 223,000 1984

6 Cameroon 255,000 1987

7 Sudan 358,000 1993

8 Papua New Guinea 241,000 1990

9 United Arab Emirates 399,000 1995

10 Nigeria 231,000 1991

11 Togo 216,000 1991

12 Pakistan 1,309,000 1998

13 Egypt 281,000 1996

14 Iran 260,000 1996

15 Bhutan 110,000 1985

16 Algeria 634,000 1998

17 Guinea 257,000 1996

18 Uzbekistan 118,000 1989

19 Eritrea 94,000 1984

20 Senegal 107,000 1985

The ranks are based on ranking all country data in the GPW/GRUMP database
(http://sedac.ciesin.columbia.edu/gpw/spreadsheets/
GPW3_GRUMP_SummaryInformation_Oct05prod.xls) by population per unit
(PPU) and date of the input population count data, then summing these to
create a simple combined rank score. Additional file 1, Table S4 shows the top
50 countries.
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mortality, and speed of spread and the implications for
planning and targeting interventions vary substantially
with demographic profiles, with clear risk groups and
vulnerable populations existing. Breakdowns of popula-
tion counts by age and sex are routinely collected dur-
ing national censuses and maintained in finer detail
within microcensus data (https://international.ipums.
org/international/). Moreover, demographic surveillance
systems (http://www.measuredhs.com/) continue to col-
lect representative and contemporary samples from clus-
ters of communities in low-income countries where
census data may be less detailed and not collected regu-
larly. Together, these datasets form a rich resource for
quantifying and understanding the spatial variations in
the sizes and distributions of those most at risk of dis-
ease, yet at present, they remain unconnected data scat-
tered across national statistical offices and websites. At
the same time, as calls are being made for improved
access to health data [45,46], efforts should be made to
gather such demographic datasets into a central
resource and better quantify the spatial distributions of
vulnerable groups, including infants, children under 5
years old, pregnant women, and the elderly.

Conclusions
Spatial medical intelligence and disease modeling are
becoming central to the effective planning, implementa-
tion, monitoring, and evaluation of disease control. Sig-
nificant advances in the approaches to mapping and
modeling of disease risks and epidemic spread have
recently been made, supported increasingly by the col-
lection of geospatially referenced survey data. Such
advances also involve the incorporation of models of
uncertainty in output disease estimates and models, but
rarely is the uncertainty inherent in the human popula-
tion datasets commonly used to provide the denomina-
tor even acknowledged. Using the example of P.
falciparum PAR estimation, we have shown that these
uncertainties can significantly impact findings. The
quantification of uncertainties inherent in existing spa-
tial population datasets, and the improvement of demo-
graphic evidence bases, represents an important
research direction if spatial approaches to disease mod-
eling and burden estimation are to become more
accurate.

Additional material

Additional file 1: Tables S1-S5 and Figures S1-S3
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