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Abstract

Background: Due to challenges in laboratory confirmation, reporting completeness, timeliness, and health access,
routine incidence data from health management information systems (HMIS) have rarely been used for the rigorous
evaluation of malaria control program scale-up in Africa.

Methods: We used data from the Zambia HMIS for 2009–2011, a period of rapid diagnostic and reporting scale-up,
to evaluate the association between insecticide-treated net (ITN) program intensity and district-level monthly confirmed
outpatient malaria incidence using a dose–response national platform approach with district-time units as the unit of
analysis. A Bayesian geostatistical model was employed to estimate longitudinal district-level ITN coverage from
household survey and programmatic data, and a conditional autoregressive model (CAR) was used to impute missing
HMIS data. The association between confirmed malaria case incidence and ITN program intensity was modeled while
controlling for known confounding factors, including climate variability, reporting, testing, treatment-seeking, and
access to health care, and additionally accounting for spatial and temporal autocorrelation.

Results: An increase in district level ITN coverage of one ITN per household was associated with an estimated 27%
reduction in confirmed case incidence overall (incidence rate ratio (IRR): 0 · 73, 95% Bayesian Credible Interval (BCI):
0 · 65–0 · 81), and a 41% reduction in areas of lower malaria burden.

Conclusions: When improved through comprehensive parasitologically confirmed case reporting, HMIS data can
become a valuable tool for evaluating malaria program scale-up. Using this approach we provide further evidence that
increased ITN coverage is associated with decreased malaria morbidity and use of health services for malaria illness in
Zambia. These methods and results are broadly relevant for malaria program evaluations currently ongoing in
sub-Saharan Africa, especially as routine confirmed case data improve.
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Introduction
As countries in sub-Saharan Africa (SSA) continue to
scale up malaria control interventions with many moving
toward elimination, rigorous evaluations are needed to en-
sure national programs are achieving desired impacts on
malaria burden. While repeated national household sur-
veys remain important for monitoring trends in popula-
tion intervention coverage, their usefulness for assessing
trends in the malaria burden will be limited in countries
achieving low parasite prevalence where impractically
large sample sizes are required to assess changes over time
and across subnational areas [1]. As such, the use of rou-
tine health system data on malaria cases and deaths will
become increasingly important for impact evaluation pur-
poses. However, because of the known biases of routine
malaria incidence data measured through health manage-
ment information systems (HMIS) [2], these data have
rarely been used to provide rigorous evidence of program
effectiveness for decision-making in Africa [3].
Although time series HMIS data have been used for so-

phisticated climate modeling and early warning systems
[4], to date most uses of HMIS data for program evalu-
ation in Africa have been simple comparisons of pre- and
post-intervention trends in rates of malaria case incidence
and deaths [5]. Only in rare cases have such studies dir-
ectly controlled for important confounding factors, includ-
ing changing diagnostic confirmation practices, access and
use of health services, HMIS completeness, and rainfall
and temperature, all of which likely lead to biased findings
of program effectiveness [2,6].
In addition, a particular issue with evaluating the impact

of national malaria control programs is that they normally
attempt to cover all at-risk populations with interventions,
which precludes the availability of a contemporaneous
control group. This challenge of evaluating full-coverage
programs is by no means unique to malaria or public
health. As a possible solution to this challenge, Victora
and colleagues (2011) proposed an evolution in evaluation
design for large-scale health programs that uses the dis-
trict as the unit of analysis to test for a dose–response re-
lationship between program inputs (or coverage) and
health outcomes, referred to by the authors as a national
platform analysis [7]. Graves and colleagues (2008) pre-
viously used such an approach in their evaluation of
vector control scale-up in Eritrea on the outcome of
HMIS-derived malaria case incidence, while accounting
for climate variability [8]. However, while their study is
a significant advancement over simple analysis of HMIS
trends over time, they did not account for malaria diagno-
sis practices, health services access, treatment-seeking,
and spatial and other unobserved correlations in the data.
Zambia has successfully scaled up insecticide-treated

mosquito nets (ITNs) since 2005, with 64% of households
owning at least one as of 2010 [9]. Since 2009, Zambia has
achieved national-level access to rapid diagnostic tests
(RDTs) and has invested substantial resources at improv-
ing HMIS malaria data collection and reporting. As a re-
sult, Zambia provides an example where prevalence was
historically high, but effective control has achieved an en-
vironment of intervention-suppressed transmission, and
confirmed case data from HMIS are increasingly available
in addition to survey prevalence data to measure trends in
the malaria burden. However, because of the recent scale-
up of RDTs and improved health access, use of HMIS case
incidence to evaluate malaria program performance must
account for improving diagnostic confirmation, HMIS
reporting, and access to health services, or results could
erroneously suggest the malaria burden is getting worse as
malaria control interventions are scaled up.
Here we present results from a district-level evaluation

design that was used to assess the dose–response rela-
tionship between ITN program intensity and HMIS-
derived confirmed malaria case incidence in Zambia be-
tween 2009 and 2011. In doing so, we present a novel
framework for rigorously evaluating full-coverage malaria
programs, as well as child survival programs in general,
that rely on imperfect HMIS data, by controlling for vari-
ability in diagnostic procedures, completeness of report-
ing, access and demand for health services, and climate,
while accounting for the inherent correlation of these
types of data across time and space.
Methods
Study site
Zambia has been scaling up coverage of long-lasting
ITNs (LLINs), indoor residual spraying (IRS), prompt
and effective treatment with artemisinin-combination
therapies (ACTs), and diagnosis at point-of-care with
RDTs since 2006 [10]. The proportion of households
with at least one ITN increased from 38% in 2006 to
62% in 2008 and 64% in 2010; the proportion of
households receiving IRS in the past 12 months in-
creased from 10% in 2006 to 15% in 2008 and 23% in
2010; [9] RDT scale-up has allowed for confirmed
diagnosis at the majority of facilities nationally since
2009 [11], and the HMIS reporting system was over-
hauled in 2008, which has greatly strengthened routine
reporting. Zambia is divided administratively into 74
districts within 10 provinces (72 and nine for the
current analysis due to an administrative separation in
2011); as of 2011, a total of 1,695 public facilities (96
hospitals, 1,352 health centers/clinics, and 247 health
posts) and 35 non-governmental clinics reported into
the HMIS on a monthly basis. Reporting for malaria
includes clinical and confirmed outpatient cases, in-
patient cases, deaths, laboratory testing, and commod-
ity use.
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Study design and participants
A dose–response ecological analysis was conducted with
district-months as the unit of analysis to evaluate the as-
sociation between ITN program intensity and outpatient
malaria case incidence. Data from the Zambia HMIS on
all monthly reported confirmed and clinical (uncon-
firmed) outpatient malaria cases from 2009–2011 were
included. Data before 2009 were excluded as cases up to
this point were reported only on a quarterly basis, a
large proportion of facilities did not report, and parasito-
logical confirmation was not widespread or reported.
Strengthening the Reporting of Observational studies in
Epidemiology (STROBE) guidelines were followed for
the reporting of methods and results [12].

Primary outcomes
A conceptual diagram of steps taken to create all variables
for analysis is provided in Figure 1, and detailed descrip-
tion of data preparation is provided in Additional file 1.
The primary outcomes included monthly confirmed and
total (confirmed + unconfirmed) outpatient malaria cases
aggregated at the district level. Before aggregating to the
district level, we imputed all missing facility-level monthly
outpatient malaria values based upon the spatial location
of the facility and the month in which it occurred using
Bayesian conditional autoregressive models.

Measures of primary exposure variables
The primary exposure variable for this analysis was ITN
coverage measured as ITNs per household at the district
Figure 1 Conceptual diagram of model inputs, processes, and output
level per year. Bayesian geostatistical models were first
used to produce estimates of ITN per person ratios from
National Malaria Indicator Surveys (MIS) and IRS pro-
gram enumeration efforts in 2008 and 2010 [9,13], and
population-adjusted values were calculated per district
(see Additional file 1: Figures S1 and S2). Bayesian gen-
eralized linear models were then used to predict values
of ITN per person ratios for districts and years without
survey data from annual district ITN distribution data
from the National Malaria Control Center (NMCC)
(Additional file 1: Figure S3). The resultant district-level
ITN per person ratio was multiplied by the average
household size of each district in order to represent
population coverage as a more programmatically useful
value, the number of ITNs per household. In final re-
gression models, we included this number of ITNs per
household variable as an anomaly from the four-year
mean for each district to control for systematic spatial
effects and potentially endogenous relationships due to
programmatic targeting decisions.
Program data on the annual numbers of structures

sprayed with IRS per district were compiled to investi-
gate independent effects of spraying and as a control
variable. In preliminary models, we found IRS terms to
be non-significant and positively associated with incidence,
which likely reflects a high degree of endogeneity given
that the IRS program initially targeted peri-urban areas
and were scaled up in higher burden areas. As we were un-
able to identify an effective instrumental variable for IRS,
we only retained IRS as a control variable—calculated as
s.
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an anomaly from the four-year district mean of the num-
ber of structures sprayed in the previous year—and did
not attempt to interpret independent associations with
incidence.

Measures of contextual and potential confounding factors
To control for climate variability over the study period,
monthly climatic data were compiled from publicly
available sources at the district level. Monthly mean
rainfall data were obtained from the Famine Early Warn-
ing System African Data Dissemination Service [14]
from 2005 through 2011. Monthly mean maximum and
minimum temperature and the enhanced vegetation
index (EVI) were obtained from MODIS satellite data
for the same period [15]. Based upon exploratory ana-
lyses, EVI values were categorized as <0 · 2, 0 · 2–0 · 3, 0 ·
3–0 · 4, and >0 · 4, where higher values represent greater
vegetation health. Anomalies were calculated for rainfall
and temperature data as the difference from each
district-month value and the district mean. Rainfall and
temperature anomaly values were then standardized by
subtracting the respective overall mean and dividing by
the standard deviation. For inclusion in regression
models, various month lag terms were assessed accord-
ing to previously documented lagged relationships be-
tween climate variables and clinical incidence [16].
To estimate physical access to health care, the open

source module AccessMOD 3.0 [17] was used to create
smoothed raster estimates of travel time to health facil-
ities by district. This estimate of facility access has been
shown to correlate well with treatment-seeking for fevers
from MIS data [18]. Based upon these estimates and dis-
trict population rasters, we calculated the percent of
each district population within two hours of a public
health facility (Additional file 1: Figure S4). These values
were standardized for inclusion in final regression
models by subtracting the overall mean and dividing by
the standard deviation.
Data from the 2006, 2008, and 2010 MIS, 2007 Demo-

graphic and Health Survey [19], and 2009 and 2011
ACTWatch household surveys [20] were compiled to es-
timate rates of treatment-seeking for fever per district.
For each district the proportion of caregivers from all six
surveys who sought treatment at a public health facility
for a child <5 with fever was calculated (Additional
file 1: Figure S5). We examined simple kriging methods
but found no difference with these cross-survey district
summaries. Similar to rainfall, temperature, and health
care access, district mean treatment-seeking rates were
standardized to one standard deviation.
To evaluate reporting rates over time we created an

index of the number of facilities reporting per district per
month as a proportion of the total number of facilities per
district, weighted by facility size (determined by mean
monthly malaria outpatient diagnoses over the study
period). We created a similar index for testing per district-
month calculated as the total number of parasitological
tests (slide or RDT) reported per health facility per month
divided by the sum of the total number of tests and the
total number of clinical (non-confirmed) malaria cases. In
cases where a confirmed case count was reported but no
parasitological testing value reported (roughly 33% of all
testing values), we replaced the missing testing value with
the number of confirmed cases.

Statistical analysis
For descriptive analyses, confirmed case data were stan-
dardized per 1,000 population and summarized as the
annual parasite index (API), which is commonly used out-
side Africa [21] but only rarely used in Africa due to low
case confirmation rates. Mid-year district-level population
estimates were available from the 2010 housing and popu-
lation census and projected for 2009 and 2011 based upon
annual rates of change. We compared several Poisson and
negative binomial regression models to test the association
between ITN coverage per district and the primary out-
comes of total and confirmed malaria outpatient cases. In
all models, we used the fully imputed cases and included
the log of the total district population as a measure of ex-
posure in order to create population-standardized inci-
dence rates. Exploratory and residual analysis revealed
potential interactions by region between primary outcome
and explanatory variables. In model construction we
therefore assessed the inclusion of interactions between
ITN coverage and transmission, as measured by mean P.
falciparum parasite rate (PfPR2–10) (Malaria Atlas Project)
categories (<10% vs. >10% and <25% vs. >25%), as well as
between ITN coverage and high-burden/low-burden prov-
ince, where high-burden provinces were those with the
highest confirmed case incidence over the entire period
(Luapula, Copperbelt, and Eastern provinces as defined in
2011) (Additional file 1: Figure S6). Models were fit in a
Bayesian framework and computed using Integrated
Nested Laplace Approximation (INLA) in R to account
for unmeasured temporal and spatial correlation [22,23].
Model fit was compared using the deviance information
criterion (DIC) [24], where models with the lowest DIC
were chosen for final interpretation. Where uncertainty
from the INLA model did not include zero, coefficients
were considered significantly different than zero. As a fur-
ther check on model specification, we compared the re-
sults of models fit by INLA with models fit in a frequentist
framework and obtained similar coefficient estimates.

Results
The 2009–2011 HMIS data set included 1,693 facilities
that reported at least one malaria observation, of which
we were able to geo-reference with global positioning
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systems (GPS) 1,387 (82%); the remaining 306 (18%)
were matched to district. Of the 60,948 maximum pos-
sible facility-month observations, there were 48,166
(79.0%) non-missing values available for total malaria
cases and 38,588 (63.3%) non-missing values for con-
firmed cases alone; the remaining 21.0% of total cases
and 36.7% of confirmed case values were imputed. The
percent of expected reports of values per year was con-
sistent over the study period among health centers
(2009: 84 · 7%, 2010: 85 · 1%, 2011: 84 · 2%) and hospitals
(2009: 65 · 1%, 2010: 62 · 9%, 2011: 63 · 3%) but increased
among health posts (2009: 54 · 4%, 2010: 67 · 1%, 2011:
77 · 4%). The mean weighted district-level reporting rate
increased slightly from 81 · 1% in 2009 to 84 · 6% in 2011
but fell somewhat in some districts at the end of 2010
and 2011 (Figure 2). Consistent with the rapid scaling-
up of testing and reporting with RDTs in clinics across
Zambia over this period, the mean testing rate (defined
as the number of tests reported divided by the sum of
tests reported and clinical cases) increased dramatically
Figure 2 Mean weighted reporting rate and mean testing rate (define
reported and clinical cases) by district for 2009, 2010, and 2011, Zam
over this period, from 33 · 0% in 2009 to 43 · 2% in 2010
and 67 · 6% in 2011. This increase in uptake and report-
ing of testing was largely consistent across districts.
Total outpatient malaria cases (clinical and confirmed)

reported through the HMIS were concentrated in districts
on the south-eastern border with Zimbabwe, Mozambique,
and Malawi, as well as in Luapula, Northern, Copperbelt,
and portions of Northwestern Provinces (Figure 3). Coin-
ciding with the progressive roll out of the new HMIS
reporting system, total reported outpatient malaria cases
increased from 3 · 0 million in 2009 (242 · 2 per 1,000
population) to 4.1 million in 2010 (322 · 8 per 1,000 popu-
lation) and 4 · 3 million in 2011 (327 · 5 per 1,000 popula-
tion). After imputing missing monthly facility case values,
there were an estimated 3 · 4 million outpatient malaria
cases in 2009 (277 · 4 per 1,000 population), 4 · 6 million in
2010 (360 · 0 per 1,000 population), and 4 · 7 million in
2011 (361 · 9 per 1,000 population). Coinciding with the
scale-up of diagnostic testing for malaria confirmation,
confirmed outpatient malaria cases reported through the
d as the number of tests reported divided by the sum of tests
bia.



Figure 3 (1) Annual confirmed outpatient cases by facility and (2) annual parasite index (API) by district after imputing missing facility-
month values, three-year average 2009–2011, Zambia.

Bennett et al. Population Health Metrics 2014, 12:30 Page 6 of 11
http://www.pophealthmetrics.com/content/12/1/30
HMIS also increased, from 871,193 cases in 2009
(API = 70 · 8 per 1,000 population) to 1 · 2 million in
2010 (API = 97 · 4) and 2 · 1 million in 2011 (API = 163 · 0).
After imputing missing monthly facility case values, there
were 1.2 million confirmed malaria cases in 2009 (API =
99 · 8), 1 · 7 million in 2010 (API = 135 · 9), and 2 · 5 million
in 2011 (API = 194 · 8). Although reported confirmed case
incidence increased in most provinces from 2010 to 2011,
total case incidence decreased in Southern Province and
slightly in Eastern Province where incidence is highest
(Figure 4).
District-level ITN coverage, as measured by the number

of ITNs per household, increased from 1 · 25 in 2009 to
1 · 34 in 2010 but fell slightly in 2011 to 1 · 28. District-
level ITN coverage and confirmed malaria case incidence
showed great variability, with some districts experiencing
drops in ITN coverage associated with an increase in con-
firmed case incidence and others experiencing substantial
increases in ITN coverage and stable or decreasing inci-
dence (Additional file 1: Figure S7).
After controlling for district reporting and testing

rates, the percent of the population within two hours of
a health facility, mean treatment-seeking, IRS, rainfall,
minimum and maximum temperature, vegetation, cal-
endar month and year, and spatial and temporal auto-
correlation, overall the number of ITNs per household
was significantly associated with lower confirmed case
incidence iIncidence rate ratio (IRR) = 0 · 73, 95%
Bayesian Credible Interval (BCI): 0 · 65–0 · 81) (Table 1
and Additional file 1: Table S1). In low-burden regions,
the number of ITNs per household was strongly asso-
ciated with lower confirmed case incidence (IRR = 0 ·
59, 95% BCI: 0 · 51–0 · 68); there was no evidence of this
association in high-burden provinces (IRR = 0 · 94, 95%
BCI: 0 · 79–1 · 10). Similarly, the number of ITNs per
household was associated with lower total malaria case in-
cidence in the overall model (IRR = 0 · 69, 95% BCI: 0 ·
62–0 · 76), as well as in low-burden provinces (IRR = 0 · 53,
95% BCI: 0 · 46–0 · 62), but not in high-burden provinces
(IRR = 0 · 93, 95% BCI: 0 · 81–1 · 10).
The standardized testing rate was positively associated

with confirmed malaria case incidence (IRR = 1 · 22, 95%
BCI: 1 · 19–1 · 25) but was negatively associated with
total malaria case incidence (IRR = 0 · 87, 95% BCI: 0 · 85–
0 · 89). The standardized reporting rate was positively asso-
ciated with total malaria case incidence (IRR = 1 · 07, 95%
BCI: 1 · 05–1 · 09) but not with confirmed case incidence
(IRR = 0 · 98, 95% BCI: 0 · 97–1 · 00). One-month lagged
EVI was positively associated with confirmed case inci-
dence (IRR = 1 · 36 comparing the highest and lowest EVI
categories, 95% BCI: 1 · 22–1 · 51). The standardized per-
cent of the population within two hours of a health facility
was inversely associated with confirmed case incidence
(IRR = 0 · 77, 95% BCI: 0 · 61–0 · 97), which likely reflects
the proportion of the population in urban areas in each
district.



Figure 4 Total (clinical + confirmed) and confirmed outpatient malaria case incidence, and total all-cause outpatient incidence, per
1,000 population by province and month, 2009–2011, Zambia.
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Discussion
In this study, we used a national platform evaluation
design to assess the dose–response relationship between
district-level ITN program intensity and HMIS-derived
confirmed malaria case incidence in Zambia between
2009 and 2011. After accounting for variability in diag-
nostic procedures, completeness of reporting, and access
and demand for health services, we show that increased
district-level ITN coverage as measured by the number
of ITNs per household is associated with lower con-
firmed case incidence. Specifically, we found that an
additional ITN per household was associated with a 27%
reduction in district-level monthly confirmed case inci-
dence overall and a 41% reduction in provinces with
lower annual burden. This finding is largely consistent
with field trials and corresponds to an average of over
300,000 fewer confirmed outpatient malaria cases per
year with each additional ITN per household [25].
This study illustrates a robust framework for mitigating

many of the known biases of routine data on malaria inci-
dence by controlling for important confounding factors,
which is a prerequisite to achieving the high internal valid-
ity required for rigorous program evaluations. Prior ana-
lyses of similar routine data have often failed to control for



Table 1 Results of space-time negative binomial models fit using INLA, for overall models (1) and models including
interaction by region (2), Zambia*

Characteristic Adjusted model coefficients (IRR, 2 · 5%-97 · 5%)

Confirmed cases (1) Confirmed cases (2) Total cases (1) Total cases (2)

ITNs per HH (overall) 0 · 73 (0 · 65–0 · 81) 0 · 69 (0 · 62–0 · 76)

ITNs per HH in low burden 0 · 59 (0 · 51–0 · 68) 0 · 53 (0 · 46–0 · 62)

ITNs per HH in high burden 0 · 94 (0 · 79–1 · 10) 0 · 93 (0 · 79–1 · 10)

Reporting rateŦ 0 · 99 (0 · 97–1 · 00) 0 · 98 (0 · 97–1 · 00) 1 · 07 (1 · 05–1 · 09) 1 · 07 (1 · 05–1 · 09)

Testing rateŦ 1 · 22 (1 · 19–1 · 25) 1 · 22 (1 · 19–1 · 25) 0 · 87 (0 · 85–0 · 89) 0 · 87 (0 · 85–0 · 89)

Percent of population within
2 hrs of public health
facilityŦ

0 · 77 (0 · 60–0 · 98) 0 · 77 (0 · 61–0 · 97) 0 · 85 (0 · 67–1 · 07) 0 · 84 (0 · 67–1 · 07)

Treatment-seeking rateŦ 1 · 03 (0 · 84–1 · 27) 1 · 03 (0 · 85–1 · 26) 1 · 02 (0 · 83–1 · 26) 1 · 03 (0 · 84–1 · 27)

High-burden province (ref: low) 2 · 39 (1 · 27–4 · 52) 2 · 39 (1 · 31–4 · 36) 2 · 08 (1 · 13–3 · 84) 2 · 09 (1 · 13–3 · 85)

IRSŦ 1 · 04 (1 · 02–1 · 06) 1 · 05 (1 · 03–1 · 06) 1 · 01 (0 · 99–1 · 02) 1 · 01 (0 · 99–1 · 03)

RFE (2–3 months lag)Ŧ 0 · 99 (0 · 97–1 · 01) 0 · 99 (0 · 98–1 · 01) 0 · 99 (0 · 97–1 · 01) 0 · 99 (0 · 97–1 · 01)

Max temp (2 mo. lag)Ŧ 1 · 02 (1 · 00–1 · 04) 1 · 02 (1 · 00–1 · 04) 1 · 03 (1 · 01–1 · 05) 1 · 03 (1 · 01–1 · 05)

Min temp (2 mo. lag)Ŧ 1 · 01 (0 · 99–1 · 03) 1 · 01 (0 · 99–1 · 03) 1 · 00 (0 · 98–1 · 02) 1 · 00 (0 · 99–1 · 02)

EVI

<0 · 2 (ref)

0 · 2–0 · 3 1 · 15 (1 · 08–1 · 21) 1 · 15 (1 · 08–1 · 21) 1 · 12 (1 · 06–1 · 19) 1 · 12 (1 · 06–1 · 19)

0 · 3–0 · 4 1 · 29 (1 · 18–1 · 40) 1 · 29 (1 · 18–1 · 41) 1 · 32 (1 · 21–1 · 44) 1 · 33 (1 · 22–1 · 45)

>0 · 4 1 · 35 (1 · 22–1 · 51) 1 · 36 (1 · 22–1 · 51) 1 · 37 (1 · 23–1 · 52) 1 · 38 (1 · 24–1 · 53)

Year

2009 (ref)

2010 1 · 38 (0 · 88–2 · 16) 1 · 41 (0 · 90–2 · 21) 1 · 23 (0 · 80–1 · 90) 1 · 27 (0 · 83–1 · 95)

2011 1 · 89 (0 · 82–4 · 37) 1 · 90 (0 · 83–4 · 36) 1 · 46 (0 · 66–3 · 25) 1 · 47 (0 · 66–3 · 27)

DIC 38241 · 0 38225 · 8 42901 · 9 42878 · 1

N 2592 2592 2592 2592

*models include calendar month dummy covariates Ŧcovariates are standardized so that a one-unit change represents one standard deviation INLA = Integrated
Nested Laplace Approximation; IRR = incidence rate ratio; ITNs = insecticide-treated nets; HH = household; IRS = indoor residual spraying; RFE = rainfall estimate;
EVI = enhanced vegetation index; DIC = deviance information criterion.
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important confounders, and many have reported on pre-
sumed or clinically-diagnosed malaria cases. For example,
Otten and colleagues (2009) found large reductions in the
number of cases in Rwanda and Ethiopia and attributed
these changes to the scale-up of malaria prevention inter-
ventions [26]. Similarly, Chanda and colleagues (2012) ana-
lyzed annual HMIS data summaries from a sample of
districts in Zambia for 2007 and 2008 and concluded that
ITNs and IRS were associated with declines in suspected
malaria case incidence and deaths [5]. However, neither of
these studies adequately controlled for several important
confounding factors known to influence health facility inci-
dence, including variations over time in climate, diagnostic
practices, access to health services, treatment-seeking be-
havior, and reporting completeness [2]. Bhattarai and col-
leagues (2007) found decreases in health facility cases
following LLIN and ACT scale-up in Zanzibar, but while
climate was considered descriptively, it was not explicitly
modeled, and the authors did not consider differences in
treatment-seeking or health care access [27]. The district
level (“sub-zobas” in Eritrea) analysis conducted by Graves
and colleagues (2008) revealed an association between the
number of ITNs distributed, IRS spraying, and clinical case
incidence, but while their analysis controlled for climate fac-
tors, they did not include information on parasitological case
confirmation, reporting, or health facility access and
treatment-seeking behavior [8]. Finally, none of these studies
accounted for the inherent correlated nature of malaria case
data across spatial units, which can result in erroneous find-
ings of statistical significance if not accounted for, and only
the Graves study accounted for temporal autocorrelation.
This study incorporated several recent methodological

advances in spatial and spatio-temporal modeling that
allow for the inclusion of complex correlation structures, as
well as spatially continuous intervention and environmental
information [28,29]. Similar modeling strategies have
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increasingly been used to evaluate temporal and spatial
trends in disease, seasonality, climate, and other factors but
not for evaluations of program impact [30]. While the
evaluation framework and accompanying statistical ana-
lyses used in this study are complex, we argue that without
such methods in place to account for potential biases in
routine HMIS data, such data cannot be used for rigorous
program evaluations to achieve meaningful and robust re-
sults for program decision-making. This is significant as
HMIS data become increasing available, parasite preva-
lence falls in areas with high control coverage, RDTs are
scaled up to allow for increased case confirmation, and as
programs require better real-time data to monitor trends
in confirmed cases and deaths.
Our finding of a significant interaction between the num-

ber of ITNs per household and low versus high incidence
regions in models predicting both confirmed and all malaria
outpatient cases was unexpected; while potentially related to
transmission, we did not find significant interactions be-
tween district ITN coverage and endemicity categories as
defined by mean PfPR2–10. Mathematical models and some
limited empirical evidence have suggested that the effect of
increasing ITN coverage on prevalence may be greater or
more rapid in areas of lower baseline transmission
[25,31-33], but there is less evidence to suggest a similar re-
lationship with clinical case incidence. It is possible that re-
gional factors such as population movement between
neighboring countries or insecticide resistance are involved,
as these provinces border high burden areas in Malawi,
Mozambique, and the Democratic Republic of the Congo
where resistance is a known problem reducing operational
effectiveness [34], and reductions in the malaria burden over
a decade of scale-up have been extremely limited [35]. It is
also possible that our testing and reporting rates do not fully
correct for biases in diagnostic reporting practices in these
high-burden areas.
The increase in both confirmed and total malaria out-

patient cases over the period of study is notable yet largely
explained by the rapid increase in RDT testing over this
period and a simultaneous increase in reporting of con-
firmed cases as a new HMIS reporting system was adopted.
Inter-annual climate patterns may explain some of the in-
crease between 2009 and 2010, as 2010 was noted as a high
transmission year in several countries in the region [36],
but we found limited evidence for this effect in our models.
User fee changes adopted in 2006 may have influenced
health facility utilization rates broadly, but the bulk of these
effects would likely have well predated our study.
There were several important limitations to our ap-

proach that should be considered. First, our evaluation was
limited by the short time frame of confirmed case data
available for analysis, as well as potentially biased by the in-
crease in reporting and testing over this period as facilities
adapted to the new reporting system. While we attempted
to control for the increase in confirmed case testing in
multivariable models, our testing rate may be an imperfect
indicator of the true testing rate, as reporting of testing
likely improved contemporaneously with RDT scale-up, la-
boratory testing values were not consistently reported, and
detailed RDT stock-out data were not available. However,
any remaining bias would most likely bring the estimated
effect of ITNs on confirmed case incidence toward the null
hypothesis of no effect.
Second, potentially endogenous relationships existed be-

tween our primary outcomes and explanatory variables of
interest due to programmatic choices targeting high-
burden or easily accessible areas. In some instances, such
as the use of calendar month in the evaluation of IRS ef-
fectiveness by Over and colleagues [37], instrumental vari-
ables may be available to infer causal relationships when
endogeneity exists. However, as no instrumental variables
uncorrelated with primary outcomes were available in our
data, we were not able to perform two-stage regression or
similar standard econometric approaches to isolate uncor-
related effects. Rather, we controlled for systematic spatial
targeting of intervention effort through the use of anomal-
ies in program coverage. This approach was effective for
ITN coverage, as the goal is for universal coverage, and
therefore targeting has been limited. However, the highly
targeted nature and relatively lower coverage of the IRS
program during this period, combined with the lack of
confirmed case data preceding IRS scale-up, precluded our
ability to make similar effective adjustments for IRS. Future
use of these data will likely prove more robust for evaluat-
ing IRS efforts as more areas are included and there is
greater heterogeneity within districts over time. Addition-
ally, we incorporated only annual ITN per household data,
which may not accurately depict monthly changes in
coverage. There is need for programs to more closely track
monthly ITN coverage data in order to make more tem-
porally refined assessments of intervention effectiveness.
Finally, we were not able to incorporate ACT data in this

analysis as these data were not available sub-nationally.
Drug stock-outs could have influenced incidence rates, but
there was no evidence to suggest systemic changes in ACT
availability over this period.

Conclusions
There is increasing need to evaluate national malaria con-
trol programs (and other national public health interven-
tions) using routine data. In this analysis we demonstrate
how subnational heterogeneity in ITN coverage can be
used to assess a dose–response relationship with HMIS-
derived confirmed case incidence, after controlling for im-
portant confounding factors. While still an observational
study design, the establishment of such a dose–response
relationship helps bolster causal inference between ITN
program inputs and malaria health outcomes when no
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true control group is available [38]. Using this approach
we provide further evidence that increased coverage with
ITNs is associated with decreased malaria morbidity and
reduced utilization of health services for malaria illness in
Zambia.
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