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Modeling contextual effects using individual-level
data and without aggregation: an illustration of
multilevel factor analysis (MLFA) with collective
efficacy
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Abstract

Population health scientists increasingly study how contextual-level attributes affect individual health. A major challenge
in this domain relates to measurement, i.e., how best to measure and create variables that capture characteristics of
individuals and their embedded contexts. This paper presents an illustration of multilevel factor analysis (MLFA), an
analytic method that enables researchers to model contextual effects using individual-level data without using derived
variables. MLFA uses the shared variance in sets of observed items among individuals within the same context to
estimate a measurement model for latent constructs; it does this by decomposing the total sample variance-covariance
matrix into within-group (e.g., individual-level) and between-group (e.g., contextual-level) matrices and simultaneously
modeling distinct latent factor structures at each level. We illustrate the MLFA method using items capturing collective
efficacy, which were self-reported by 2,599 adults in 65 census tracts from the Los Angeles Family and Neighborhood
Survey (LAFANS). MLFA identified two latent factors at the individual level and one factor at the neighborhood level.
Indicators of collective efficacy performed differently at each level. The ability of MLFA to identify different latent factor
structures at each level underscores the utility of this analytic tool to model and identify attributes of contexts relevant
to health.
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Population health scientists are increasingly interested in
studying multilevel phenomena, or how features of the
social and physical contexts in which individuals live,
learn, work, and play (e.g., neighborhoods, schools, or
workplaces) are associated with individual health, dis-
ease, and behavior [1,2]. A major challenge faced by
multilevel researchers relates to measurement and how
best to measure features of contexts and create variables
that capture both the characteristics of individuals and
the contexts in which they are embedded. Identifying
novel measures to capture the features of contexts that
may be relevant to health is an area where multilevel re-
searchers have urged for more progress [3-8].
* Correspondence: erindunn@pngu.mgh.harvard.edu
1Psychiatric and Neurodevelopmental Genetics Unit, Center for Human
Genetic Research, Massachusetts General Hospital, 185 Cambridge Street,
Simches, Room 6.252, Boston, MA 02114, USA
Full list of author information is available at the end of the article

© 2015 Dunn et al.; licensee BioMed Central. T
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
One of the best examples of the challenges related to
and limitations of existing approaches with regards to
measurement of multilevel phenomena is evident in re-
search on collective efficacy. Collective efficacy was first
articulated in a paper by Sampson and colleagues as a
feature of neighborhoods that consists of two dimen-
sions: social cohesion among neighbors (social cohesion)
and neighbors’ willingness to intervene on behalf of the
common good (informal social control) [9]. Since its
introduction, collective efficacy has been one of the
most heavily studied constructs in epidemiological and
population-based research, particularly neighborhood
studies, with more than 5,000 articles citing the paper
introducing the concept. Collective efficacy has been found
in numerous empirical studies to be positively associated
with many health and developmental outcomes [9-14].
As shown in Table 1, several approaches have been

used to create variables that capture collective efficacy
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Table 1 Approaches used to construct variables to model the effects of collective efficacy or related social-environmental
variables, such as income inequality or social capital

Variable approach Description Examples

Derived variable Derived variables are created by summarizing the characteristics of
individuals within a group, using means, medians, proportions, or
measures of dispersion (e.g., variances) or other aggregation
approaches

Based on group-level mean Use average individual responses to items on a given scale; these
means are then subsequently averaged across individuals living in
the same context (e.g., neighborhood) to arrive at a contextual-level
measure.

[10,14,16,17]

Based on group-level variance Use average individual responses to items on a given scale; the
variance (or standard deviation) in these means are then examined
among individuals living in the same context (e.g., neighborhood)
to arrive at a contextual-level measure.

[19]

Factor Analysis Capture the shared variance among an observed set of variables
in terms of a potentially smaller number of unobserved constructs
or latent factors.

Single-level factor analysis Latent factors are estimated at only one level (i.e., the individual
or contextual level).

[18]

Multilevel factor analysis (MLFA) Latent factors are estimated at two-levels of analysis. Latent factors
structures can differ at each level of analysis.

[24-28]

Hierarchical Latent Variable Model A special case of the 2-level MLFA that imposes stricter parameter
constraints than the most general MLFA wherein latent factors are
estimated at only the individual level with the factor variances
decomposed into within- and between-group components.

[9,51]
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or related contextual-level social phenomena, such as
income inequality or social capital. The most popular
approach has been to create a derived variable, which
entails summarizing the characteristics of individuals
within a group, using means, medians, proportions, or
measures of dispersion (e.g., variances) or other aggrega-
tion approaches [15]. Means have been the most popular
type of derived variable used in research on collective
efficacy as well as other areas of multilevel research. To
construct these group or contextual-level means, the
major strategy has been to first average individual re-
sponses to items on a given scale; these means are then
subsequently averaged across individuals living in the
same context (e.g., neighborhood) to arrive at a
contextual-level measure [10,14,16-19].
A second approach has been to use factor analytic or

latent variable models to determine whether multiple
items should be grouped together in a common con-
struct. Although factor analytic methods can be con-
ducted at one or more levels of analysis (e.g., individual
level, contextual level, or both), the majority of studies
have focused on single-level factor analytic approaches
[18]. Few studies have used latent variable approaches to
study collective efficacy, even though the authors intro-
ducing the concept used a hierarchical linear latent vari-
able modeling approach to study collective efficacy and
estimate its relationship to violent crime [9].
While both derived variables and single-level factor

analytic approaches are widely used and easy to construct,
their use in multilevel research may be problematic in
some cases. For example, there may be instances when
more than one variable best represents the contextual-
level phenomenon. Moreover, there may also be instances
when it is misleading to assume the function of the items
and how they relate to each other is the same at all levels
of analysis. New approaches are therefore needed that
allow researchers to model contextual effects using
individual-level data when existing measurement strat-
egies (e.g., derived variables, single-level factor analyses)
are not ideal.
In an effort to expand the population health scientist’s

toolkit, this paper provides an applied example of one
analytic technique – multilevel factor analysis (MLFA) –
that is a good alternative to existing approaches to create
group or contextual-level measures. MLFA is not a new
method, as it was first articulated more than 25 years
ago [20-23]. However, the method has not yet been
widely used, especially in population health and epidemi-
ology. MLFA allows researchers to both model context-
ual effects using individual-level data without using
derived variables and create variables that capture indi-
vidual as well as group-level variability using one or
more measures at each level of analysis (see for example
[24-28]).
MLFA is part of a family of factor analytic models that

seek to capture the shared variance among an observed
set of variables in terms of a potentially smaller number
of unobserved constructs or latent factors. Conceptually
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and analytically, MLFA is distinct from the other meas-
urement approaches, including derived variables, single-
level factor analyses, and hierarchical latent variable
models (HLVM), which all assume the constructs of
interest are the same at each level of analysis. Single-
level exploratory (EFA) or confirmatory factor analysis
(CFA) estimates latent factors at only one level (i.e., the
individual or contextual level). HLVM also estimates
latent factors at only one level but captures both
within- and between-level variability in those fac-
tors. In contrast, MLFA allows for different latent
factor structures at each level of analysis. This oc-
curs because the MLFA decomposes the total sam-
ple variance-covariance matrix into within-group
(i.e., individual-level, within a context) and between-
group (i.e., contextual-level) matrices and simultan-
eously models distinct latent factor structures at
each of these levels [22,29,30]. As we detail below,
HLVM is a special case of MLFA. Thus, MLFA can
be viewed as an analytic approach that allows the
user to relax some of the potentially untenable as-
sumptions and constraints imposed by the HLVM
specification.
In this methodological demonstration, we apply MLFA

to examine the underlying factor structure of items
measuring collective efficacy and compare the results to
the closest analytic alternative, the HLVM. Although our
focus is on collective efficacy for demonstration pur-
poses, the MLFA technique can be applied to numerous
other possible contextual-level social constructs. The
MLFA technique could also be extended to evaluate the
measurement quality (e.g., reliability and validity) of
contextual or ecological measures, including those that
are directly assessed (rather than ascertained through
data collected on individuals), as has been advocated by
researchers concerned with “ecometrics” [6,31].
A web-based Technical Guide (see Additional file 1) is

provided to guide users in implementing MLFA in
MPlus. This Technical Guide is intended to guide readers
on the procedures to fit and interpret results from two
multilevel factor analytic models: (1) a multilevel ex-
ploratory factor analysis (ML-EFA), and (2) multilevel
confirmatory factor analysis (ML-CFA).

Methods
Sample and study design
Data came from the Los Angeles Family and Neighborhood
Survey (L.A. FANS), a longitudinal study examining the
impact of neighborhoods on children’s development and
well-being [32]. The study followed a stratified random
sample of 3,090 households from 65 census tracts in Los
Angeles County. Within each household that contained
both adults and school-aged children, a randomly selected
adult (RSA) was chosen, who completed surveys at Wave
I (Spring 2000-Fall 2001). For the current study, we used
data on perceptions of the neighborhood collected from
the RSA. Our analytic sample consisted of 2,594 RSA
respondents living in 65 census tracts. Respondents
were primarily female (69.1%), Latino(a) (59.5%), and
non-home owners (59.4%), with a mean age of 38.8 years
(sd = 13.6).

Measures
Collective efficacy
Based on previous work [9], collective efficacy was
measured using 10 items that captured both perceived
neighborhood informal social control and social cohe-
sion [10].
Social cohesion was measured using seven items

(refer to items 1–7 in Table 2) rated on a five-point
scale (1 = strongly agree to 5 = strongly disagree). In-
formal social control was measured using three items
(refer to items 8–10 in Table 2) rated on a five-point
scale (1 = very unlikely to 5 = very likely) indicating
how likely the respondent would be to intervene if they
witnessed these three events.

Statistical analysis
We used multilevel factor analysis (MLFA), a method
that models the responses for person i in cluster j (e.g.,
neighborhood) to a set of M items (or indicator vari-
ables), denoted yij = (y1ij,…, yMij), as a function of both
individual-level (i.e., within-group or “Level 1”) and
neighborhood-level (i.e., between-group or “Level 2”)
factors, represented by ηW and ηB, respectively.
The within-group model is given by

yij ¼ νj þ ΛWηWij þ εij; ð1Þ

where νj is a vector of the neighborhood j’s mean
responses for each of the M items for the population of
individuals embedded in neighborhood j; ηWij is a vector
of individual i’s values for the individual-level factors,
with Ε(ηW) = 0 and Var(ηW) =ψW ; ΛW is a matrix of
factor loadings describing the relationships between the
individual-level factors, ηW, and the indicator variables,
yij; and εij is the residual for individual i in neighborhood
j, with Ε(ε) = 0 and Var(ε) = θ. Typically, with continuous
ys, the residuals and factors are specified to be normally
distributed, with all residuals uncorrelated with each
other and with the factors.
The between-group model is given by

νj ¼ γ þ ΛBηBj þ ζj; ð2Þ

where γ is a vector of overall means for the M items;
ηBj is a vector of neighborhood j’s values for the group-
level factors, with Ε(ηB) = 0 and Var(ηB) =ψB; ΛB is a



Table 2 Intraclass Correlation Coefficients (ICC) for indicator variables in the Los Angeles Family and Neighborhood
Study (LAFANS) n = 2594

Intraclass correlation coefficient

Total sample Sample one Sample two

Indicator variables N = 2594 n = 1291 n = 1303

1…this is a close-knit neighborhood 0.083 0.112 0.121

2…there are adults that kids look up to 0.198 0.253 0.216

3…people around here are willing to help their neighbors 0.133 0.142 0.174

4…people in this neighborhood generally don’t get along with each other 0.149 0.148 0.178

5…adults watch out that kids are safe 0.085 0.112 0.089

6…people in this neighborhood do not share the same values 0.120 0.174 0.114

7…people in this neighborhood can be trusted 0.203 0.198 0.254

8…children were skipping school and hanging out on a street corner 0.104 0.131 0.125

9…children were spray-painting graffiti on a local building 0.262 0.299 0.273

10…children were showing disrespect to an adult 0.062 0.093 0.090

ICC refers to the proportion of variance in the indicator variable that is due to differences across neighborhoods. Neighborhoods were defined here as
census tracts.
Items number 4 and 6 were reverse coded.
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matrix of factor loadings describing the relationships be-
tween the group-level factors, ηB, and the group-level
random intercept indicators, νj; and ζj is the residual for
neighborhood j, with Ε(ζ) = 0 and Var(ζ) = σ. Like the
within-group model, the residuals and factors are speci-
fied to be normally distributed, with all residuals uncor-
related with each other and with the factors.
Substituting Equation 2 into Equation 1 yields a single

combined model:

yij ¼ γ þ ΛWηWij þ ΛBηBj þ ζj þ εij; ð3Þ

showing that the observed responses at the individ-
ual level are specified as distinct effects of both
individual- and group-level factors. These effects are
depicted in Figure 1 by a path diagram for a hypo-
thetical six-item MLFA with two within-group and
one between-group factors. The variables (observed
in squares and latent in circles) within the “Individual
i” box are variables that vary across each individual
embedded in neighborhood j. The variables outside
the “Individual i” box and within the “Neighborhood
j” box vary across each neighborhood, but are con-
stant for all individuals within a given neighborhood.
The individual-level and neighborhood-level residuals
are represented by the small arrows pointing to the
observed ys and the neighborhood-level random
intercept, respectively.
The model described in Equations 1 and 2 can be ex-

tended to non-continuous (e.g., binary, ordinal, count,
etc.) indicator variables using a generalized linear model
formulation. Briefly (and as outlined in greater detail in
[33,34]), any vector of indicator variables, yij, can be
expressed as the sum of the individual expected values,
μij and the individual residuals, εij; that is,

yij ¼ μyij
þ εij: ð4Þ

The distribution of the residuals is chosen to corres-
pond to the measurement scale of the observed indica-
tors, e.g., a Bernoulli distribution for binary indicators. A
link function, g, then relates the individual expected
values to a linear combination of the latent factors; that
is,

g μyij

� �
¼ νj þ ΛWηWij: ð5Þ

The between-group model remains the same. In the
case of continuous approximately normally distributed
observed outcomes, the usual specification is the identity
link function, resulting in straightforward linear regres-
sions relating the observed variables to the latent factor.
In the case of binary indicators, one might choose a logit
link function, resulting in logistic regressions relating
the observed categorical indicators to the latent factors.
In the case of an observed ordinal response scale, as
with our indicators of collective efficacy, we used the
ordinal probit link function [35]. All models were esti-
mated via weighted least squares using a diagonal weight
matrix with standard errors and mean- and variance-
adjusted chi-square test statistics that used a full weight
matrix (WLSMV).
To showcase the MLFA approach, we conducted our

analyses in four steps. First, we calculated intraclass cor-
relation coefficients (ICCs) for each item. These ICCs



Figure 1 Path diagram for a hypothetical 6-item multilevel confirmatory factor analysis (ML-CFA) with two individual-level and one
neighborhood-level factors.
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provide information about the proportion of variance in
each item that is due to differences between neighbor-
hoods. Second, we used polychoric correlations (where
each correlation is a measure of the pairwise association
for two ordinal variables, which rests upon the assump-
tion of an underlying joint continuous distribution) to
examine the strength, direction, and magnitude of the
associations among the items. We examined these asso-
ciations in two correlation matrices: (1) the within-level
(individual) matrix; and (2) the between-level (neighbor-
hood) matrix. Third, we randomly split the sample into
two equally sized subsamples and conducted a multilevel
exploratory analysis (ML-EFA) with one subsample and
a confirmatory analysis (ML-CFA) with the other. An
EFA is ideal to use in situations when researchers lack
hypotheses concerning the number of latent factors
underlying an item set or what the relationships are
between each factor and the items; a CFA is more ap-
propriate when researchers have hypotheses regarding
the number of factors and the factor-item relationships
or are seeking to test the validity of a theoretical model
[36,37]. Both techniques are shown here for illustration
purposes.
Finally, we fit the hierarchical latent variable model

(HLVM) outlined by Sampson et al. [9] as a comparison.
The HLVM is a special case of the MLFA, where the fac-
tor measurement model is the same (i.e., same number
of factors, same loading patterns, and same loading
values) at the within- and between-group models and
there is no between-group item-specific residual. HLMV
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can also be seen as an extension of a single-level factor
analysis, where the overall factor variance-covariance
structure is comprised of within- and between-group
variance-covariance components. The important dis-
tinction between the MLFA and HLVM is that the fac-
tors in the HLVM are only defined at the within-level
while in the MLFA there are distinct factors defined at
both the within- and between-level models. For the
HLVM, the within-group is the same as for the MLFA,
as given in Equation (1). The between-group model is
given by

νj ¼ γ þ ΛWηBj: ð6Þ

Substituting Equation (6) into Equation (1) yields a
single combined model for the HLVM:

yij ¼ γ þ ΛW ηWij þ ηBj

� �
þ εij; ð7Þ

where γ is a vector of overall means for the M items;
ηWij and ηBj capture within-group across-person variabil-
ity and between-group variability, respectively, in a set of
latent factors, η, with Ε(η) = 0 and Var(η) =ψW +ψB ; ΛW

is a matrix of factor loadings describing the relationships
between the factors, η, and the indicator variables, yij; and
εij is the residual for individual i in neighborhood j, with
Ε(ε) = 0 and Var(ε) = θ. The HLVM can be more simply
written as

yij ¼ γ þ Ληij þ εij;
ηij ¼ αj þ ξij;

ð8Þ

showing that the observed indicators are a function of
only individual-level factors with the variance-covariance
of those factors explicitly decomposed by the model into
within-group and between-group variance components.
As with the MLFA, the HLVM can use a generalized lin-
ear model approach to specify the relationships between
the items and the factor in the case of non-continuous
item responses. The specific HLVM model used by
Sampson et al. [9], expressed as a three-level model with
items nested within persons nested within clusters,
imposes the additional constraints of all factor loadings
being fixed at one and all item residual variances con-
strained to be equal.
We conducted all analyses using Mplus software ver-

sion 7. Mplus handles missing data under the missing at
random assumption (MAR) using the WLSMV estima-
tor, which allows missingness to be a function of the ob-
served covariates, but not observed outcomes, as is the
case for full information maximum likelihood (FIML).
When there are no covariates in the model, as is the case
here, this is analogous to pairwise present analysis
[38,39]. Analyses also included sampling weights to
adjust for non-response and the unequal probability of
selection of neighborhoods and households into the
sample. Across all models, we evaluated goodness-of-fit
using the model chi-square test, normed comparative fit
index (CFI; [40]), root mean square error of approxima-
tion (RMSEA; [41]), and the standardized root mean
square residual (SRMR; [38]). These statistics provide
information about how well the model-estimated popu-
lation correlations reproduce the sample correlations.
Acceptable model fit was determined by a non-significant
chi-square test, CFI values greater than 0.95, and RMSEA
and SRMR values below 0.10 [42]. The CFI, RMSEA, and
SRMR values were given more emphasis than the chi-
square test, as the chi-square test statistic is often sig-
nificant (implying there is significant misfit of the model
to the data) when the sample size is large. In the MLFA,
an SRMR is provided at both the within and between
level. As there are no established guidelines for inter-
preting the SRMR at the between level, we considered
the guidelines that are typically applied for single-level
analyses (≤0.10). We also examined the residuals for the
between-level correlation matrix, which are an indicator
of model fit.
Of note, there are alternative statistical software

packages, such as MLwiN or MLwiN via Stata, that
can be used to estimate MLFA models. Readers inter-
ested in fitting the MLFA using MLwiN are referred to
the MLwiN website: http://www.bristol.ac.uk/cmm/
software/mlwin/. In addition, the MLFA method can
also be fit using Markov chain Monte Carlo (MCMC)
methods. Such Bayesian estimation procedures may
provide a particularly good alternative to maximum
likelihood methods in instances when maximum likeli-
hood is too computationally intensive or when there
are some instances of a small number of individuals
per cluster or when there are a small number of overall
clusters [21].

Results
Intraclass correlation coefficients (ICC)
ICC estimates ranged from small to large in magnitude
and were generally equivalent across our split samples
(Table 2). In the total sample, the largest estimated ICC
(0.262) was for the item “children were spray-painting
graffiti on a local building.” The lowest ICC in the total
sample (0.062) was for “children were showing disres-
pect to an adult.” Thus, most of the variability in these
items was due to differences across individuals within
rather than between neighborhoods. However, there was
considerable variability among the indicators as to the
proportion of variation explained between neighbor-
hoods. This suggests that neighborhood-level variation
is not uniform across indicators and that for some indi-
cators, neighborhood-level influences may be more
important.

http://www.bristol.ac.uk/cmm/software/mlwin/
http://www.bristol.ac.uk/cmm/software/mlwin/
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Correlations
As shown in Tables 3 and 4, the within level (individual)
and between level (neighborhood) had different correl-
ation structures. While the average absolute correl-
ation value at the within level was 0.304 (range r = 0.093
to r = 0.557), the average absolute correlation value at the
between level was higher (average = 0.685; range r = 0.205
to r = 0.934). Some items also had markedly differently
correlations at each level. For example, the items “people
here do not get along with each other” and “people would
intervene if children were spray painting graffiti” had a
very strong correlation at the between-level (r = 0.858),
but a weak correlation at the within-level (r = 0.239).
These finding suggest the item-to-item relationships
differ across the two levels of analysis (within- and
between-level).
Multilevel factor analysis (MLFA) results
Multilevel exploratory factor analysis (ML-EFA)
The final ML-EFA model, which was selected based on
good model-data consistency, parsimony, and interpret-
ability, had two within-level factors and one between-
level factor (Table 5). In this factor solution, the largest
factor loadings for each item at the within level (0.418 to
0.773) and between level (0.462 to 0.972) ranged from
moderate to high. In addition to good overall model fit,
as evidenced by the CFI of 0.947 and RMSEA of 0.059,
this solution also had excellent model fit specifically at
the within and between levels, as shown in the SRMR
values at each level 0.039 and 0.068, respectively. In con-
trast, the next best fitting model – the two factor within
and two-factor between model – had a good overall fit
(SRMRwithin = 0.039; SRMRbetween = 0.045). However, the
second between-level factor had only one significantly
Table 3 Correlations among indicators at the within-level

1 2 3 4

1 CLOSEKNIT 1.000

2 ADULTS 0.461 1.000

3 HELP 0.483 0.467 1.000

4 ALONG 0.210 0.310 0.368 1.000

5 SAFE 0.395 0.377 0.458 0.240

6 VALUES 0.153 0.093 0.165 0.321

7 TRUST 0.408 0.422 0.528 0.309

8 SKIP 0.256 0.207 0.296 0.174

9 GRAFFITI 0.219 0.239 0.283 0.212

10 DISRESPECT 0.287 0.202 0.285 0.194

CLOSEKNIT = this is a close-knit neighborhood; ADULTS = there are adults that kids loo
here don’t get along with each other; SAFE = adults watch out that kids are safe; VALUES
can be trusted; SKIP = people would intervene if children were skipping school and ha
spray-painting graffiti; DISRESPECT = people would intervene if children were showing
These correlations were taken from the sample used for the multilevel exploratory
loading item (refer to page 21 of the online Technical
Guide.
Beyond its empirical fit, the ML-EFA solution was also

aligned with prior theory. At the within level, the first
factor mapped on to the construct social cohesion and
the second factor mapped on to the construct informal
social control, as described by others [9,10]. At the be-
tween level, the indicator variables only supported one
overarching factor, which has previously been labeled as
collective efficacy [9,10]. Interestingly, the sixth item
(people in this neighborhood do not share the same
values) did not load significantly on either factor at the
within level, but had a significant factor loading at the be-
tween level. This finding illustrates that indicator variables
can perform differently at each level of analysis and there-
fore items should only be removed from a MLFA if they
are determined not to function at both levels of analysis.
The first and second within-level factors were moder-

ately correlated (r = 0.521). The communalities, or item-
specific R2 values, which refer to the proportion of an
indicator’s total variance accounted for by the factor
solution, ranged at the within level from a low of 8.4%
(for respondents’ rating of people in the neighborhood
sharing the same values) to a high of 57.1% (for respon-
dents’ rating of people’s willingness to help neighbors) at
the within level. At the between level, the communalities
were higher across the items, ranging from a low of
21.4% (for neighborhoods’ collective tendency to inter-
vene if children show disrespect to an adult) to a high of
94.4% (for neighborhoods’ collective tendency to watch
out that kids are safe).

Multilevel confirmatory factor analysis (ML-CFA)
The ML-EFA results from the first subsample were
cross-validated using ML-CFA for the second subsample.
5 6 7 8 9 10

1.000

0.141 1.000

0.487 0.234 1.000

0.333 0.124 0.358 1.000

0.358 0.163 0.294 0.557 1.000

0.261 0.125 0.278 0.470 0.476 1.000

k up to; HELP = people here are willing to help their neighbors; ALONG = people
= people here do not share the same values; TRUST = people in this neighborhood
nging out on the corner; GRAFFITI = people would intervene if children were
disrespect to an adult. Items 4 and 6 were reverse coded.
factor analysis (ML-EFA).



Table 4 Correlations among indicators at the between-level

1 2 3 4 5 6 7 8 9 10

1 CLOSEKNIT 1.000

2 ADULTS 0.735 1.000

3 HELP 0.773 0.862 1.000

4 ALONG 0.593 0.758 0.855 1.000

5 SAFE 0.749 0.853 0.897 0.902 1.000

6 VALUES 0.561 0.620 0.668 0.754 0.705 1.000

7 TRUST 0.742 0.842 0.870 0.834 0.934 0.653 1.000

8 SKIP 0.826 0.641 0.731 0.677 0.765 0.650 0.697 1.000

9 GRAFFITI 0.729 0.858 0.870 0.857 0.865 0.725 0.823 0.757 1.000

10 DISRESPECT 0.489 0.205 0.478 0.316 0.254 0.257 0.320 0.480 0.382 1.000

CLOSEKNIT = this is a close-knit neighborhood; ADULTS = there are adults that kids look up to; HELP = people here are willing to help their neighbors; ALONG = people
here don’t get along with each other; SAFE = adults watch out that kids are safe; VALUES = people here do not share the same values; TRUST = people in this
neighborhood can be trusted; SKIP = people would intervene if children were skipping school and hanging out on the corner; GRAFFITI = people would intervene if
children were spray-painting graffiti; DISRESPECT = people would intervene if children were showing disrespect to an adult. Items 4 and 6 were reverse coded.
These correlations were taken from the sample used for the multilevel exploratory factor analysis (ML-EFA).
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As shown in Table 6, the fit of the ML-CFA model was
good (CFI = 0.903; RMSEA = 0.079; SRMRwithin = 0.054;
SRMRbetween = 0.073). By and large, factor loadings in the
ML-CFA were similar to the ML-EFA.
We also ran an alternative ML-CFA specification with

the constraints imposed by the Sampson et al. version
of the HLVM described earlier. The overall fit of this
model was markedly worse than the ML-CFA without
these restrictions (χ2 = 1445.265; df = 86; p-value <
0.001; RMSEA = 0.110; CFI = 0.766; SRMRwithin = 0.095;
SRMRbetween = 0.325), suggesting that a more restricted
model lacked the model-data consistency observed with
the less restrictive ML-CFA. Of note, a single-level fac-
tor analysis, which is the equivalent of adding to the
HLVM a further constraint of zero between-level factor
variance, would have a poorer fit than the HLVM. Al-
though not the case here, it is possible that for another
Table 5 Factor loadings of indicators for the multi-level explo

1…this is a close-knit neighborhood

2…there are adults that kids look up to

3…people around here are willing to help their neighbors

4…people in this neighborhood generally don’t get along with each other

5…adults watch out that kids are safe

6…people in this neighborhood do not share the same values

7…people in this neighborhood can be trusted

8…children were skipping school and hanging out on a street corner

9…children were spray-painting graffiti on a local building

10…children were showing disrespect to an adult

χ2 = 337.222; df = 61; p-value < 0.00001; CFI = 0.947; RMSEA = 0.059; SRMRwithin = 0.
All factor loadings in an EFA are standardized.High EFA loadings appear in bold.
Items 4 and 6 were reverse coded.
dataset, the HLVM specification could fit equivalent to
the MLFA. Such a finding would suggest that the data
do not support a different factor structure at the within
and between-group levels, and the HLVM could be
favored as a more parsimonious model. A researcher,
however, would not be able to make this determination
without comparing the HLVM to the MLFA.

Discussion
This methodological demonstration of MLFA to collect-
ive efficacy shows that use of either simple aggregation
methods, in the form of derived variables, or single-level
factor analyses, may not be the best way to construct
contextual-level variables from individual-level data. We
arrived at this conclusion based on three sets of results.
First, we found that ICC values were not the same for
every item; some items showed quite high neighborhood-
ratory factor analysis (ML-EFA)

Within-level Between-level

Factor 1 Factor 2 Factor 1

0.618 0.030 0.797

0.642 −0.034 0.833

0.735 0.038 0.935

0.418 −0.008 0.931

0.630 0.035 0.972

0.297 0.015 0.668

0.773 −0.046 0.924

0.121 0.662 0.823

0.001 0.711 0.917

−0.010 0.723 0.462

039; SRMRbetween = 0.068.



Table 6 Standardized factor loadings of items for the Multi-Level Confirmatory Factor Analysis (ML-CFA)

Within-level Between-level

Factor 1 Factor 2 Factor 1

1…this is a close-knit neighborhood 0.622 0.774

2…there are adults that kids look up to 0.631 0.824

3…people around here are willing to help their neighbors 0.701 0.857

4…people in this neighborhood generally don’t get along with each other 0.474 0.828

5…adults watch out that kids are safe 0.649 0.819

6…people in this neighborhood do not share the same values 0.266 0.807

7…people in this neighborhood can be trusted 0.681 0.897

8…children were skipping school and hanging out on a street corner 0.724 0.667

9…children were spray-painting graffiti on a local building 0.769 0.928

10…children were showing disrespect to an adult 0.613 0.353

χ2 = 629.816; df = 69; p-value < 0.00001; RMSEA = 0.079; CFI = 0.903; SRMRwithin = 0.054; SRMRbetween = 0.073.
Items 4 and 6 were reverse coded.
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level variation and others showed very little. The lack
of uniformity in between-neighborhood variation across
these items suggests neighborhood context may have dif-
fering levels of salience across this set of items and that
not all items should be treated equally in terms of their
importance to understanding neighborhoods.
Second, the correlation structure of the items was dif-

ferent across the individual (within) and neighborhood
(between) levels. Specifically, the correlation among
items was much higher at the between level than the
within. Moreover, how the items related to each other
also differed across levels; some items had high correla-
tions at one level and modest correlations at the other.
These findings provided an initial sign that there may be
different factor structures at the two levels of analysis.
Third, when we ran the MLFA, we found that the

best-fitting model was one that modeled collective effi-
cacy as a two dimensional construct at the within level,
consisting of the two latent constructs informal social
control and social cohesion, and a one dimensional
construct at the between level, consisting of collective
efficacy. This two-factor within and one-factor between
model was confirmed in the ML-CFA. Imposing an
identical factor structure at both levels resulted in a
worse-fitting model, particularly when we imposed a set
of stricter constraints described in the original paper
introducing collective efficacy [9]. While the stricter
constraints may be reasonable and could be supported
by the data in some cases, there may be instances, such
as the case here, where the items were not all equally
good indicators of collective efficacy and thus imposing
equal factor loadings and equal residual variances con-
straints was not consistent with the observed data. We
also found that the items performed differently in terms
of their factor loadings at the within compared to
between level. For example, the item “people in this
neighborhood do not share the same values” did not
load at the within level, but loaded at the between.
Taken together, the results of the current study suggest
that collective efficacy, and perhaps other social con-
structs, can have very different meanings at each level of
analysis and are perhaps most appropriately studied at
the neighborhood level as one overarching construct
and not divided into its two dimensions, informal social
control and social cohesion, as has been done in some
prior studies (see for example [13,43]).
Our study has the following limitations. The measure

of collective efficacy was not identical to the original
measure [9]. It is possible our results would have been
different had we used a different measure of collective
efficacy. The number of neighborhoods in this study
(n = 65) was also small relative to other studies. More-
over, our definition of neighborhoods was based on an
administrative definition (i.e., Census tract), which may
not adequately reflect meaningful geographic boundaries
that represent distinct social experiences or cultures
[44,45]. Though an imperfect measure to define neighbor-
hoods, Census tracts are most commonly used in multi-
level research in the United States [8].
Finally, the MLFA technique is, of course, not without

its limitations. For example, it can be computationally
intensive. Most software also only allow for two-level
structures. In spite of these challenges, results of our
analysis underscore the potential utility of MLFA and
suggest that using other more easily implemented ap-
proaches, such as single-level factor analyses, may not
be ideal. As we showed, the MFLA method revealed dif-
ferent latent factor structures at each level of analysis.
Our results also demonstrated that imposing a simpler
factor structure, with identical factor structures at each
level, was not consistent with the data and resulted in a
poorer-fitting model.
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Results of this study have several important implica-
tions for measuring social environments potentially
linked to health. Multilevel researchers have lamented
the lack of progress in identifying novel measurement
tools to characterize contextual-level constructs and as a
result have called for new approaches [3-8]. Although
more work is needed, results of the current study
suggest that MLFA may be a promising method to con-
struct variables from individual-level data for use in
multilevel analyses. The MLFA technique allows re-
searchers to use individual-level items to construct mea-
sures of the social context using a more flexible
approach than other types of hierarchical models. The
MLFA approach can also be easily applied with survey
data, which remains the most common and cost effective
type of data collected. Moreover by using MLFA, re-
searchers establish the measurement model necessary
for estimating a multilevel structural equation model
(ML-SEM), where direct and indirect effects between
latent variables, covariates, and individual items, existing
at two or more levels of analysis, are examined [42,46,47].
Although still not widely used in epidemiology or popula-
tion health, SEM models are an alternative to traditional
techniques that can be used for exploratory or hypothesis-
generating purposes [48] or to test more complex rela-
tionships between a set of variables [49,50].
In conclusion, our results suggest MLFA is a promis-

ing alternative to using derived variables and single-level
factor analytic approaches. Future studies are warranted
to validate the current results in relation to collective
efficacy and extend the MLFA technique to other di-
mensions of the neighborhood environment as well as
other social contexts that influence health.
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