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Abstract

Background: Reliable health metrics are crucial for accurately assessing disease burden and planning interventions.
Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of
denominators to transform case counts into incidence measures. These denominator estimates generally come
from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account
for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted
the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a
range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of
short-term human population movement and to map dynamism in population densities.

Methods: We show how mobile phone data can be used to measure seasonal changes in health district population
numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria
case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations
in denominators caused by seasonal mobility on malaria incidence estimates.

Results: We show that even in a sparsely populated country with large distances between population centers, such as
Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria
incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps.
These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in
the north of Namibia and underestimation in lower-risk areas when compared to using static populations.

Conclusion: The results here highlight how health metrics that rely on static estimates of denominators from censuses
may differ substantially once mobility and seasonal variations are taken into account. With respect to the setting of
malaria in Namibia, the results indicate that Namibia may actually be closer to malaria elimination than previously
thought. More broadly, the results highlight how dynamic populations are. In addition to affecting incidence estimates,
these changes in population density will also have an impact on allocation of medical resources. Awareness of
seasonal movements has the potential to improve the impact of interventions, such as vaccination campaigns or
distributions of commodities like bed nets.
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Background
The Sustainable Development Goals (SDGs) aim at a
significant reduction in the burden caused by commu-
nicable diseases, most prominently AIDS, malaria and
tuberculosis [1]. Accurate measurements of disease inci-
dence are key for monitoring progress towards these
goals and for targeting resource allocation and interven-
tion activities to further reduce disease burden [2]. Many
SDG health indicators such as disease morbidity and
mortality are measured through passive surveillance sys-
tems reporting at the level of health facilities or districts
and are reliant on estimates of facility catchment or dis-
trict populations to convert case counts to population-
level metrics. Incidence-reporting, the number of reported
cases divided by the population size (denominator), is
used in many large international efforts, ranging from the
assessment of the global burden of disease, such as
malaria or tuberculosis [3–5], to routine government sur-
veillance to guide resource allocation, interventions and
elimination efforts. Improving surveillance, diagnostics
and measurement methods has received substantial focus
recently, aiming to improve quality and coverage of case
data as well as rapidity of reporting [6–9]. However, reli-
able and contemporary case records are only part of the
equation and the task of improving population denomi-
nator estimates has received much less attention [10].
Accurate data on the distribution, and ideally demo-

graphics, of the population is crucial for reliable incidence
estimates at subnational scales. Where contemporary de-
nominator data are not available, reporting case numbers
instead of incidence is generally the only option. This
leads to a bias in reported disease burden as more popu-
lated areas will naturally have more cases. Typically, de-
nominators are based on static census-derived estimates
or annual projections from these baselines, but this
approach has two main limitations. First, in many low-
income settings, census population counts can be unre-
liable and outdated [10]. Methods based on satellite
imagery and aerial photography continue to be ex-
plored for estimating population counts and distribu-
tions in the absence of census numbers [11, 12], but
these, like a census, only provide a single snapshot of
estimates, often missing substantial seasonal changes in
population distributions.
Many studies have highlighted the dynamic nature of

human populations through quantitative analyses, par-
ticularly recent studies in low income settings [13–16].
Movements span multiple timescales and are driven by a
variety of factors: from long term migration and crisis-
induced displacements, to short term seasonal move-
ments [17–23]. Seasonal movements can be observed in
all countries [13, 15, 24–28], with holidays, school terms
and agricultural seasons being key drivers. These strong
seasonal movements lead to changes in population

distributions, which result in changing denominators
that cannot be captured through simple projections from
census counts. Nevertheless, assessments of disease
burden, calculations of health facility budgets, staffing
and stocks, and routine intervention delivery are all
planned based on static denominators. In the past,
methods for capturing seasonal movements and the
resulting changing population distributions have been
unavailable, since information over large spatial extents
and high temporal resolution are needed to capture
these movements. Satellite nightlights have been shown
to be a useful source for capturing seasonal migration
patterns in low income regions [13], but these data only
capture relative changes in brightness at the edges of
large cities, produce no information for rural areas and
only provide approximate estimates on the timings of
substantial migration events. Travel history surveys can
provide valuable information, but are limited to small
areas and sample sizes and also suffer from recall bias.
Novel sources of data on human movements that may

be capable of capturing seasonal movement patterns
with high temporal resolution and over large spatial ex-
tents have recently become available [17]. With high
mobile phone ownership and usage rates, even in low-
income settings [29], large volumes of data on popula-
tion movements at unprecedented spatial and temporal
resolution are obtainable using inferred location data
from mobile phone calling records. These call data
records (CDRs) are recorded by mobile phone operators
for billing purposes and include the location of the mobile
phone tower through which calls and text messages are
routed. Changes in the tower that an individual’s commu-
nications are routed through can be used to measure in-
dividual movements, which can then be aggregated to
produce flow estimates across differing spatial and tem-
poral scales [30, 31]. Such data are being recorded con-
tinuously and have been used in several contexts to assess
human movements and changes in population distribu-
tions. Notable example applications are quantifying the
impact of mobility on malaria risk [22, 24, 25, 32] and
other diseases [23, 33], as well as measuring displace-
ments after natural disasters [30, 34, 35]. Other recent
analyses have also shown the potential of using CDRs
to produce accurate and seasonally varying population
distribution maps [28].
In this paper, we demonstrate how CDRs can be used

to estimate changing population distributions subna-
tionally. Using the example of P.falciparum malaria in
Namibia, which is aiming for elimination of the disease,
we show how estimates of seasonally changing health
district denominators result in changing incidence esti-
mates over the static denominators used at present to
derive malaria incidence estimates. We show that taking
into account seasonal fluctuations of population density
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affects incidence estimates and highlight potential areas of
overestimated and underestimated incidence.

Methods
Census
We obtained data on population counts from the most
recent Namibia census, conducted in September 2011
[36]. To obtain census counts at the health district level,
we summed the population counts for all administrative
units contained within a health district. The resulting
data are shown in Fig. 1a. As censuses are typically under-
taken every 10 years, population projections are generally
used as denominators in disease incidence calculations and
we therefore use population projections provided by the
Namibian Statistics Agency (NSA) [37] for quantifying inci-
dence in 2012–2014. Since these projections are on region
level, we calculated the predicted rate of increase for each
region and then assigned this rate to all health districts con-
tained within that region to obtain projections for each
health district for each year. Here we will refer to these pro-
jected population numbers as the ‘static denominators’.

Malaria data
Malaria case data from both public and private health
facilities in Namibia (n = 356 reported malaria case data,
Fig. 2) from January 2010 to May 2014 were obtained
from the Namibia National Vector-borne Diseases Control
Programme (NVDCP). There were 469 facilities in total in
Namibia between 2010 and 2014, of which 377 (80.3 %)
are managed in the public sector (Ministry of Health and
Social Services, missions, non-governmental organisations
and Ministry of Defence and police) while 92 (19.7 %) be-
long to the private sector managed by private individuals.
Malaria case data represented confirmed P.falciparum
malaria cases for the study period for all ages. The number
of cases varied by year and were lowest in 2012 (n = 3299)
and highest in 2010 (n = 26,373). For the majority of pri-
mary facilities, Rapid Diagnostic Tests (RDTs) were used

routinely to examine blood samples from most patients al-
though a few were examined using microscopy [38],
mostly at secondary and tertiary facilities. Since it was not
possible to distinguish cases that had been confirmed
using an RDT or via microscopy, there was no stratifica-
tion based on diagnosis. In total, the data were generally
complete (over 90 %), in terms of reporting rates for the
majority of facilities, with zero recorded cases referring to
no confirmed malaria cases. Case counts were aggregated
by month and health district for the purposes of the ana-
lyses undertaken here. Figure 1b shows the annual inci-
dence (sum of all cases over the year) for 2011 using
census population counts as the denominator. Spatial dif-
ferences in incidence are evident, with high incidence in
the north-east and low incidence in the south.

Mobile phone call data records (CDRs)
Mobile phone operators routinely collect CDRs for billing
purposes. CDRs typically include the date and time of all
communications (including SMS and calling), an anon-
ymised identifier code for the user who made or received
the communication and the tower through which the call
or text was routed. From the CDRs, daily locations of users
can be calculated by determining the most frequently used
tower for each individual and day. Previous studies have
shown that using night time CDRs leads to more accurate
population density estimates when compared against
census-derived counts [28]. Thus, to ensure comparability
with the census-derived counts [36], only night-time com-
munications were used. We determined night-time as the
time between 8 pm and 6 am (the following morning),
with calls made between midnight and 6 am being
counted towards the previous day (see Fig. 3a). Once we
determined individual’s locations for each day, any days
without night time communications (and thus undefined
location) were assigned the closest known location, either
backwards or forwards in time. This reduced stochastic

Fig. 1 Population size, malaria incidence, and mobile phone ownership in Namibia: a Population numbers per health district according to 2011
census, b Annual parasite incidence 2011 using census population numbers as denominator, c mobile phone ownership according to DHS 2013
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fluctuations in the data resulting from varying usage rates
by providing a stable underlying user population.
For the example case of Namibia discussed here, we

used a data set spanning 43 months from October 2010
to May 2014. The data set contains 72 billion communi-
cations and was provided by the leading mobile phone
provider in Namibia, MTC. This data set covers a high
proportion of the population, as Namibia has relatively
high phone ownership rates, even in rural areas (Fig. 1c)

[39], MTC has a very high market share of the Namibian
mobile communications market (76 % for 2010–2012)
[40, 41] and all health districts are covered by mobile
phone towers (Fig. 2).
The resulting data set from Namibia contained the

number of unique users per day for each tower. To
aggregate to the coarser scale of months to align with
the malaria case data, we calculated the mean daily
number of users for each tower. To obtain health district

Fig. 2 Health facility locations and mobile phone tower density: Health facility locations for facilities with completed case reports. Colour of health
districts according to tower density as towers per 1000 km2

Fig. 3 CDR data processing method illustration: a Extracting unique users per tower from raw CDR data. b Redistribution of user counts from
tower level to health district level based on areas of intersection
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level user numbers from this, we followed the methods
described in Deville et al. [28], allocating numbers of
users to health districts based on the area of intersection
between tower reception areas and health districts. If the
area covered by a certain tower was entirely within one
health district, all population associated with that tower
were counted towards the total of the health district. If
the coverage area of a tower spanned two or more health
districts, the number of users was divided across the
health districts based on the area of overlap between
the coverage area and the respective health district
(see Fig. 3b). Tower coverage is generally approxi-
mated by Voronoi polygons if no other information is
available, but for the setting of Namibia, MTC pro-
vided approximate ranges of their towers which we
used instead to more accurately determine coverage
areas of towers and intersections with health district.
The method discussed here, provided us with monthly

user numbers for each health district which we used to
assess denominator changes.

Denominator changes
For a given month and health district, we calculated a
ratio representing relative density of users in the health
district during that month, compared to density of users
during the census period (September 2011). While the
28 August 2011 is listed as the official census date, in
some remote areas the enumeration was reported to
have taken up to mid-September [42], therefore we used
September 2011 as the census month.
Rapid changes in user numbers were assumed to be the

result of increases or decreases in population numbers.
Thus, change in user numbers was used to estimate the
changes in population distribution, and the ratio of change
derived from the CDRs was applied to the census popula-
tion count of each health district. We then adjusted those
estimates to match the projected population totals [37].
We use these estimates as the ‘dynamic denominators’ for
comparison against the static denominators.
The adjustment to match total population numbers is

necessary since the data set spans a long period of time
and an increase in user numbers over this period was
observed (Additional file 1: Figure S2). Since mobile
phone penetration rates are still far from 100 % in most
low and middle income countries (especially in rural
areas), we expect to see an increase in mobile phone
ownership over time and therefore increasing number of
users. Additionally, given the length of the time period
covered by the CDR data set, there will have been an in-
crease in actual population numbers as well. We there-
fore use the projected population numbers to adjust our
estimates, as we expect growth of the user base to be
faster than the population growth. Additionally, this

enabled comparison between incidence estimates using
static and dynamic denominators.

Results
Compared to the use of non-projected census counts,
using projected estimates accounts for estimated popula-
tion growth. However, projected estimates still fail to ac-
count for seasonal changes. The dynamic denominators
used here capture and quantify the intra-annual changes
in the population distribution over time (Fig. 4). These
changes in the population distribution are the result of
population movements, measured here as movements
between health districts. The majority of these movements
are seasonal and occur around holiday periods, with the
most prominent change happening around Christmas
time. In December, substantial population movements
from the capital, Windhoek, to the north of the country
are evident, most likely caused by people visiting friends
and relatives (Fig. 4). This movement is reversed in
January with people returning home. Relatively smaller,
but still significant movements like this can be seen later
in the year, for example around Easter. The change in
population distribution around Christmas is of particular
importance, due to the magnitude of population flows as
well as that time coinciding with the early part of the
malaria transmission season. Note that while clear sea-
sonal patterns exist, variation between years is also evident
in the magnitude and timing of peaks (Fig. 4).
To assess the impact of these changes in population

distribution on disease incidence estimates, we calcu-
lated the monthly P.falciparum malaria incidence for the
2011–2014 period using both the static and dynamic
denominators, to create ’static’ and ‘dynamic’ incidence
estimates for each health district and quantify their dif-
ferences. Figure 5 shows the difference between the
static and dynamic incidence estimates as percentage of
the dynamic estimate, with separate lines for each health
district. We coloured the lines according to the NVDCP
health district classification into three malaria risk zones
which range from 1 (high risk, red) to 3 (low risk,
yellow), (see Fig. 5, inset map). This figure shows that
compared to the dynamic incidence estimates (which
take into account seasonal fluctuations in population
distribution), the static estimates are likely overestimating
actual incidence by up to 30 % for the northern higher risk
zone, especially for the beginning of the peak malaria
transmission season in December/January. In the zones of
lower risk (zones 2 and 3, orange and yellow), using static
denominators underestimates incidence by up to 30 %.
Figure 6 shows the difference between incidence estimates
using static and dynamic denominators for January 2012.
The high risk zones in the north of Namibia mostly
exhibit overestimation of incidence when using static de-
nominators, while areas with lower incidence show
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underestimation (such as Windhoek in the center with
more than 10 % underestimation). Incidence changes
over time are shown for several select health districts,
highlighting the seasonal transmission of malaria in
Namibia (Fig. 6).

Discussion
Accurate and recent subnational data on population
sizes and distributions in low- and middle-income coun-
tries are valuable for constructing health and wealth re-
lated metrics as well as improving geographically targeted

Fig. 5 Difference in incidence estimates using dynamic and static denominators: Difference between dynamic and static incidence as percent of
dynamic incidence estimate. Colour of lines according to malaria risk zone classification of the corresponding health district as shown in inset map

Fig. 4 Seasonal changes in population numbers: Difference in predicted population number between November and December 2011 for each
health district. Insets show predicted population number for selected health districts over the whole study period
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policies for reducing inequalities among and within coun-
tries [43, 44]. In the context of the SDG health metrics,
which aim at targeting the most vulnerable populations,
reliable datasets on the distribution of the population at
subnational scales provide a solid base for accurately iden-
tifying individuals at risk of contracting diseases [44], and
for monitoring progress in reducing disease burden over
time and space [45].
The results shown in this paper highlight that seasonal

mobility and resulting changes in population distribution
can affect subnational incidence estimates substantially,
which in turn impact disease burden and distribution
estimates. Namibia’s current malaria strategy aims to
achieve a national case incidence of less than 1.0 per
1000 population by 2016 [38], and mapping incidence
subnationally provides important indicators of progress
towards this aim as well as measuring seasonal changes
and highlighting key regions for targeting. The likely
overestimation of incidence in the high-risk areas in the
north of Namibia at certain times of year when using
static denominators (Fig. 5) implies that Namibia may
well be closer to elimination than previously thought.
At the same time, consistent underestimation in the
lower-risk zones as a result of seasonally changing
population numbers could lead to insufficient alloca-
tion of resources to keep areas of unstable transmission
malaria free.

In addition to being crucial as denominators to assess
disease burden, contemporary and reliable population
data are needed for planning and resource allocation.
Disease prevalence and population distributions change
with time, especially in the decade or longer between
censuses. On shorter time scales, seasonal mobility leads
to variations in health facility service and stock demand.
Without information on population dynamics, staffing
and resource allocation, decisions have to be made using
static and potentially outdated catchment population
numbers. Where mobility in low income regions has been
explored at national scales, strong seasonal patterns are
evident (e.g. [13, 15]), leading to increased pressure on
health services in certain regions, depending equally on
interactions with seasonally varying pathogen dynamics.
In addition to estimating incidence, updated population
counts can be used to assess seasonally varying demand
on health systems, thus providing a broader scope for
these data than communicable diseases. Preparedness
for variation in demand on health facilities (especially
seasonal increases in demand) can ensure more reliable
service provision from communicable diseases, to non-
communicable and chronic diseases. Seasonally variable
population distribution maps are also important for survey
design, where knowledge of seasonal fluctuations is im-
portant for defining population sizes and capturing the
demographics of groups that engage in seasonal migration.

Fig. 6 Difference between dynamic and static incidence for January 2012: Difference between dynamic and static incidence as percent of
dynamic incidence estimate for each health district for January 2012. Red indicating overestimation of incidence using the static denominator and
blue corresponding to potential underestimation. Insets show the dynamic incidence for selected health districts over the whole study period
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While the methods presented here facilitate assess-
ment of seasonal changes in population distribution
and the resulting impact on incidence estimates, limi-
tations do exist. Since the method relies on the cen-
sus population counts for transforming changes in
phone user numbers into changes in population num-
bers, any inaccuracies in the census numbers will
affect downstream estimates. Therefore, this approach
cannot be used to assess the accuracy of a census or
improve on it other than to provide more up to date
estimates following seasonal changes. Another issue is
data coverage, and while 95 % of the population of
Namibia lives in areas with mobile phone coverage
[46], there are large areas (mainly desert) without
coverage. Populations living in or temporarily moving
into areas without phone coverage cannot be accounted for
by the methods outlined here, which will be problematic
for countries with lower coverage, though this is a declining
problem as mobile phone coverage continues to rise glo-
bally (http://www.gsma.com/mobileeconomy/global/2015/
GSMA_Global_Mobile_Economy_Report_2015.pdf). Simi-
lar issues arise in settings with low mobile phone own-
ership rates, which tend to be biased towards the
least accessible and poorest population groups [47],
though again, these biases are decreasing as phone owner-
ship rises (http://www.gsma.com/mobileeconomy/global/
2015/GSMA_Global_Mobile_Economy_Report_2015.pdf).
Household surveys could help assess which parts of the
population are potentially under-represented by CDRs.
Depending on the survey, they can provide information
on phone usage and ownership patterns and allow assess-
ment of spatial differences that could bias results. For
Namibia, we have used the DHS from 2013 [39] to assess
geographical differences in household phone ownership.
The aim here was simply to improve estimates of

catchment facility denominator dynamics over existing
census-based numbers to refine disease incidence met-
rics. It is clear, however, that information on treatment
seeking behaviours would further improve the value of
the outputs. People travelling may seek treatment away
from home or prefer to seek treatment at their place of
residence. Without explicit data on treatment seeking
rates, we cannot further refine the relationship between
population distribution and health facility catchment
sizes. The incubation period of malaria adds another
area of uncertainty in the dynamic incidence measures
presented here, as for some cases the appropriate de-
nominators may actually be from the previous month.
While the focus of the example presented here is malaria,
the same method can be applied to other diseases. How-
ever, it is important to take into account the time scales
considered. For diseases with longer incubation periods,
such as TB or HIV, long term migration data from cen-
suses or travel surveys may be a suitable source for

understanding dynamics. However, where migration data
from censuses or surveys are unreliable or outdated, CDRs
also can be used to assess population movements over
longer temporal scales.
Building on this work of defining changes in popula-

tion size over time, ongoing research is focussed on the
mapping of absolute population numbers directly from
CDRs, rather than relative changes, through adaptation
of previously developed models [28]. This research will
likely require adaption to the context of to low and mid-
dle income countries that typically have incomplete net-
work coverage and lower phone ownership, using spatial
modelling techniques [48] to improve spatial accuracies
where network coverage is poor. Additionally, integrating
survey data on phone ownership and usage will aid in
addressing demographic and cultural biases.
CDRs are collected continuously by mobile phone

providers, but due to privacy concerns access is strictly
regulated and thus restricted. Issues with anonymity
have been raised, specifically for individual level mobility
data [49]. However, the data required for applying the
methods presented in this paper are far less sensitive,
as the approach relies solely on user counts for given
spatial units, thus not containing any individual level
information or movement information. This could open
up the possibility of ongoing, near-real time data feeds,
which would allow for such data to be dynamically inte-
grated into health information systems through collab-
oration between network operators and governments.
Supported by appropriate incentives, this would im-
prove incidence-based metrics, allow better assessment
health system demands as well as demands on services
in general.

Conclusion
The advent of the SDGs, as well as increasing global
focus on disease elimination and health metrics, is pro-
ducing a greater emphasis on improving disease case
detection for surveillance at fine spatial scales. However,
in most cases the denominator data used to then con-
struct incidence estimates come from aging and static
census data. Here, we have demonstrated that seasonal
movements lead to changes in denominators, which in
turn affect incidence estimates. In the example of malaria
in Namibia, the results indicate that Namibia may actually
be closer to malaria elimination than previously measured
using denominator data that do not account for seasonal
movements. We have shown how these movements that
lead to changing denominators can be measured using
mobile phone CDRs. Accurately measuring changes in
population distribution can be crucial for monitoring
communicable and vector-borne disease dynamics as well
as intervention planning and resource allocation.
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