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Abstract 

Background: We have previously developed and validated a biomarker‑based metric of overall health status using 
Mahalanobis distance (DM) to measure how far from the norm of a reference population (RP) an individual’s bio‑
marker profile is. DM is not particularly sensitive to the choice of biomarkers; however, this makes comparison across 
studies difficult. Here we aimed to identify and validate a standard, optimized version of DM that would be highly 
stable across populations, while using fewer and more commonly measured biomarkers.

Methods: Using three datasets (the Baltimore Longitudinal Study of Aging, Invecchiare in Chianti and the National 
Health and Nutrition Examination Survey), we selected the most stable sets of biomarkers in all three populations, 
notably when interchanging RPs across populations. We performed regression models, using a fourth dataset (the 
Women’s Health and Aging Study), to compare the new DM sets to other well‑known metrics [allostatic load (AL) and 
self‑assessed health (SAH)] in their association with diverse health outcomes: mortality, frailty, cardiovascular disease 
(CVD), diabetes, and comorbidity number.

Results: A nine‑ (DM9) and a seventeen‑biomarker set (DM17) were identified as highly stable regardless of the 
chosen RP (e.g.: mean correlation among versions generated by interchanging RPs across dataset of r = 0.94 for both 
DM9 and DM17). In general, DM17 and DM9 were both competitive compared with AL and SAH in predicting aging 
correlates, with some exceptions for DM9. For example, DM9, DM17, AL, and SAH all predicted mortality to a similar 
extent (ranges of hazard ratios of 1.15–1.30, 1.21–1.36, 1.17–1.38, and 1.17–1.49, respectively). On the other hand, DM9 
predicted CVD less well than DM17 (ranges of odds ratios of 0.97–1.08, 1.07–1.85, respectively).

Conclusions: The metrics we propose here are easy to measure with data that are already available in a wide array of 
panel, cohort, and clinical studies. The standardized versions here lose a small amount of predictive power compared 
to more complete versions, but are nonetheless competitive with existing metrics of overall health. DM17 performs 
slightly better than DM9 and should be preferred in most cases, but DM9 may still be used when a more limited num‑
ber of biomarkers is available.

Keywords: Physiological dysregulation, Biomarkers, Mahalanobis distance, Population composition, Allostatic load, 
Self‑assessed health

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
A key challenge in the study of population health is the 
operationalization of a metric for global health status. 
In addition to potential clinical use at the individual 
level, such a metric would serve many purposes at the 
population level. It could serve as a control/adjustment 
variable, similar to how socioeconomic status and age 
are adjusted for in many epidemiological studies. It 
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could serve as a short-term or intermediate outcome 
for interventions, either clinical or policy. It could be 
used by diverse fields ranging from health economics 
to sociology, demography, epidemiology, and clinical 
research. One approach to this problem has been using 
subjective metrics of global health such as self-reported 
health. However, subjective perception of health is con-
ditioned by cultural or social norms as well as by medi-
cal diagnosis and access to health-care resources [1]. 
Thus, unless a subjective component is a main dimen-
sion to be addressed, it may be preferable to use objec-
tive health metrics that tend to be more stable [2], 
although specific criteria for their construction is still a 
matter of discussion.

A major challenge is that health is unquestionably 
multidimensional, and summarizing information from 
different indicators into a single index is not a straight-
forward problem. Defining the dimensions is challeng-
ing and has not yet been the study of rigorous study, to 
our knowledge. Various metrics of comorbidity, multi-
morbidity and frailty have been proposed in the litera-
ture [3–5], though most of them show limited variation 
among healthy younger and middle-aged adults because 
they are based on elements that only occur late in life. In 
this context, the deficit accumulation approach to frailty, 
based on a simple count of potential health deficits pre-
sent in an individual, is particularly attractive because it 
is relatively robust to the precise choice of deficits in the 
list and health deficits can thus identify a wide range of 
severities, some of which are manifested even in younger 
individuals [6, 7]. But despite the wide use of metrics 
based on deficit accumulation, a standardized version has 
yet to be developed [8].

On the other hand, there are biomarker-based metrics 
that attempt to integrate the signal of multiple aspects of 
health. Perhaps the best-known of these is allostatic load 
[9]. Allostatic load is based on the theory that chronic 
stress can leave physiological sequalae that can be meas-
ured by creating a metric of common biomarkers linked 
to appropriate physiological systems: neuro-endocrine 
stress (cortisol, epinephrine, norepinephrine), metabolic 
markers (blood pressure, lipid profiles, glucose metabo-
lism, obesity metrics), as well as a few additional bio-
markers (inflammatory markers, DHEA-S, IGF-1, etc.) 
[10, 11]. However, allostatic load is challenging because it 
is conceptualized based on circular reasoning: the proxy 
metrics are chosen because of their known association 
with health and aging, so it is unsurprising the sum does 
as well [12]. Because it is often operationalized as a count 
of how many of the factors exceed clinical bounds, meas-
ures of allostatic load end up resembling comorbidity 
metrics in many ways, though the latter are generally not 
biomarker based.

Recently, our lab group has developed an alternative 
biomarker-based metric of physiological dysregulation 
based on a statistical distance (specifically, Mahalanobis 
distance) among biomarkers [13]. The idea is that a popu-
lation average is an approximation of a homeostatic state, 
and that deviations from this multivariate biomarker 
average represent dysregulation and thus should increase 
with age and predict poor health state. Indeed, we have 
shown that dysregulation rates increase with age within 
individuals, and predict multiple health outcomes (mor-
tality, frailty, various chronic diseases) after controlling 
for age [14, 15]. A lack of sensitivity to precise biomarker 
choice, and an increasing signal with more biomarkers 
confirm a complex systems interpretation of dysregula-
tion as an emergent property of physiological regulatory 
networks [16]. Results can be replicated in many human 
populations [13, 14, 17–27] and even in captive pri-
mates [28] and wild birds [29]. Lastly, dysregulation can 
be measured either globally or by specific physiological 
system [30], opening up the possibility for much more 
detailed characterization of health state.

The dysregulation approach presents a number of clear 
advantages. All variables are left continuous, so there is 
no information loss due to categorization. The scale from 
0 to infinity is appropriate for measuring dysregulation. 
Because it uses distances from the mean of each bio-
marker rather than absolute levels, it agrees with theory 
on biological homeostasis, which suggests that interme-
diate values of individual biomarkers should generally be 
optimal, and with evidence that variance increases with 
dysregulation [31, 32]. The Mahalanobis distance also 
incorporates the correlation structure of the variables, 
appropriately down-weighting redundancy among bio-
markers. The insensitivity to biomarker choice means 
that it can be easily applied in existing datasets, can be 
applied in clinical contexts, and can be applied cheaply 
without requiring fancy, cutting-edge biomarkers. 
Importantly, it avoids the circularity problems present 
with allostatic load and metrics of biological age: the bio-
markers are not selected based on correlations with age 
or health state, and there is no required calibration with 
age or health state, so the signal is an independent indica-
tor of physiological state.

Nonetheless, some of these same advantages also pre-
sent challenges. First, the possibility to use nearly any 
broad combination of biomarkers means that there is no 
standard version, and that values from one study can-
not be compared directly to those from another. Second, 
while the approach works in every human population 
tested, differences in biomarker levels and correlations 
across populations mean that separate calibration (cal-
culation of the mean vector and variance–covariance 
matrix) is required for each population. This poses 
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problems for small studies (e.g. in clinical research) 
where the sample is too small to provide a robust esti-
mation of these parameters. Third, the combination of 
these issues means that there are technical challenges 
for potential users who are less statistically inclined and 
would like a simple recipe.

Here, we present a standardized version of a bio-
marker-based global health metric that overcomes these 
problems. Specifically, we provide a clear methodology 
and rationale for choosing a subset of biomarkers that 
provide a strong signal, are readily available in most con-
texts, and can be calibrated across populations, not just 
within. We demonstrate the stability of the metric and 
its predictive power for health outcomes compared to 
widely used metrics: self-assessed health (SAH) and allo-
static load (AL). We call the metric “DSign” for Dysregu-
lation Signature, and propose a principle version based 
on 17 biomarkers and a secondary version based on 9 
biomarkers, for cases in which all 17 may not be avail-
able. All biomarkers in both versions are standard clinical 
markers that can be readily measured in almost any set-
ting for a very reasonable cost (e.g. < $1/marker).

Methods
Datasets
To construct our standard DM versions, we used data 
from two longitudinal cohort studies and one cross-
sectional survey (see Table  1 for details): the Baltimore 

Longitudinal Study of Aging (BLSA), Invecchiare in Chi-
anti (InCHIANTI), and the National Health and Nutri-
tion Examination Survey (NHANES). BLSA, one of 
the world’s longest studies of aging in humans, is com-
posed of community-dwelling adults in the Baltimore 
and Washington DC areas aged 21–96 [33]. A 2003 re-
design of methodology was tailored to improve the infer-
ence for systems-level questions [34], and we use data 
on 1205 individuals from after this date. InCHIANTI 
is a prospective population-based study of 1156 adults 
aged 65–102 and 299 aged 20–64, randomly selected 
using multistage stratified sampling from two towns in 
Tuscany, Italy [35]. We used data from baseline (1998–
2000) and three follow-ups (2001–2003, 2005–2006, and 
2007–2008). NHANES is a continuous cross-sectional 
stratified survey designed to be representative of the US 
population. Data are updated approximately every year 
and are made available freely (Centers for Disease Con-
trol and Prevention of the U.S. Department of Health and 
Human Services; http:// www. cdc. gov/ nchs/ nhanes. htm). 
We used individuals aged 20  years or older from the 
waves 1999–2000, 2001–2002, 2003–2004, 2005–2006, 
2007–2008, and 2009–2010, which have been described 
in detail elsewhere [36]. Unless specified otherwise, all 
three training datasets were kept separated to allow com-
parison across them.

Validation of our standard DM versions was performed 
with the Women’s Health and Aging Study (WHAS). 

Table 1 Characteristics of study populations (at first visit)

a We used the best performance of two attempts to walk four meters at usual pace
b Raw MMSE scores (ranging from 0 to 30) were used, higher scores indicating better cognition

Characteristic BLSA InCHIANTI NHANES WHAS
n = 1139 n = 1252 n = 17,379 n = 1067

Age (years)

 Mean ± SD 64.6 ± 13.8 68.2 ± 15.5 49.4 ± 19.0 77.1 ± 6.8

 Range (min–max) 26.4–99.3 21.3–98.4 20–85 65.8–100.3

Female (%) 549 (48.2) 694 (55.4) 9073 (52.2) 1067 (100.0)

Race (white, %) 728 (63.9) 1252 (100.0) 8768 (50.5) 801 (75.1)

Education (years), mean ± SD 17.0 (2.6) 7.2 (14.5) – 10.7 (3.8)

4‑m walking time (s)a, mean ± SD – 4.1 ± 2.8 – 9.8 ± 10.0

MMSE  scoreb, mean ± SD – 25.9 ± 3.7 – 26.5 ± 3.0

Self‑assessed health

 1 (%)—highest perceived health – 159 (13.3) – 25 (4.2)

 2 (%) – 640 (53.7) – 88 (14.9)

 3 (%) – 323 (27.1) – 188 (31.9)

 4 (%) – 57 (4.8) – 199 (33.7)

 5 (%)—lowest perceived health – 13 (1.1) – 90 (15.3)

Allostatic load

 Mean ± SD – 2.6 ± 1.8 – 2.1 ± 1.6

 Range (min–max) – 0–11 – 0–9

http://www.cdc.gov/nchs/nhanes.htm
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WHAS is a population-based prospective study of com-
munity-dwelling women drawn from eastern Baltimore 
City and Baltimore County, originally consisting of two 
separate studies: WHAS I, which includes 1002 women 
aged 65 + among the 1/3 most disabled in the popula-
tion [37], and WHAS II, which includes 436 women aged 
70–79 among the 2/3 least disabled [38].

Variables
Thirty-one biomarkers were available in all datasets in 
sufficient sample sizes (see Additional file 1: Table S1 and 
Fig. S1): hemoglobin, hematocrit, red cell distribution 
width (RDW), mean corpuscular hemoglobin (MCH), 
mean corpuscular hemoglobin concentration (MCHC), 
red blood cell count (RBC), platelets, white blood cells 
(WBC), basophil percentage (BASO%), lymphocyte 
percentage (LYM%), monocyte percentage (MONO%), 
neutrophil percentage (NEUT%), ferritin, glucose, cal-
cium, chloride, sodium, potassium, vitamin B12, folate, 
total cholesterol, triglycerides, high density lipoprotein 
(HDL), albumin, alkaline phosphatase (ALKP), total pro-
teins, gamma-glutamyl transferase (GGT), lactate dehy-
drogenase (LDH), uric acid, alanine transaminase (ALT), 
aspartate transaminase (AST).

Most health outcomes measures were only available 
for InCHIANTI and WHAS, and specific available data 
varied substantially between the two: frailty was available 
longitudinally in WHAS but only cross-sectionally in 
InCHIANTI, whereas comorbidities (specific diagnoses 
and count) were available cross-sectionally for WHAS 
but longitudinally for InCHIANTI. Specific comorbidi-
ties included diabetes and cardiovascular disease (CVD). 
In InCHIANTI, we used the same definitions of CVD 
and diabetes as previously described [30], with the fol-
lowing modification: we attributed a score of 1 to “pos-
sible” (0.5) scores. Sensitivity analyses previously showed 
that similar results are obtained by treating these possi-
ble diagnoses as absence or presence of the disease [15]. 
For frailty, we used the number of Fried’s frailty criteria 
[5] (from 0 to 5), rather than a dichotomous outcome, to 
increase our statistical power. Details on the number of 
comorbidities can also be found elsewhere [30].

Covariates for regression models included age (mod-
elled as flexible cubic basis spline with the bs function 
from the fda package, using five degrees of freedom in 
InCHIANTI and four in WHAS), sex (InCHIANTI only), 
measures of physical and cognitive functions (four-meter 
walk time and Mini Mental State Examination [MMSE] 
score), and measures of socioeconomic status. Time to 
walk four meters was measured by asking subjects to walk 
4 m at their usual pace, using a cane or walker if needed. 
We used the best performance (time in seconds) of two 
attempts. Time to walk four meters was available at all 

visits for InCHIANTI, but only at first visit for WHAS, 
and for WHAS I only (the 1/3 most disabled in the popu-
lation). We used the raw score of the Mini Mental State 
Examination (MMSE), which measures global cognitive 
function with scores ranging from 0 to 30, higher scores 
indicating better cognition [39]. MMSE score was avail-
able at all visits for InCHIANTI, but only at first visit for 
WHAS. Socioeconomic variables included education 
level (in years) for InCHIANTI, and race, income, and 
education level (in years) for WHAS.

For SAH in InCHIANTI, participants answered the 
question: “How would you evaluate your current health? 
How do you feel now?” with scores from 1 (“very poor”) 
to 5 (“very good”). In WHAS, SAH was recorded as “per-
ceived health condition” from 1 (“excellent”) to 5 (“poor”). 
To facilitate comparison, we used inverted SAH scores 
for InCHIANTI, such that lower scores indicate better 
health and higher scores worst health, mirroring DM.

Distance‑based metric of physiological dysregulation
To calculate our dysregulation score (DM), we consider 
individuals as points in a multi-dimensional biomarker 
space, where each biomarker is an axis of the space. 
DM defines a reference population (RP) whose centroid 
approximates "the ideal state", and then calculates the 
Mahalanobis distance to the centroid for each individual, 
according to Eq. 1 [40]:

where x is a vector of simultaneously observed values 
for the biomarkers, μ is the equivalent-length vector of 
means for each biomarker in the RP, and 

∑

 is the vari-
ance–covariance matrix of the biomarkers in the RP. 
Unless specified otherwise, each dataset served as its 
own RP in DM calculation. We also constructed a com-
posite RP (hereinafter referred to as “composite RP”) 
with an equal number of subjects (n = 1138) from each 
of the three training datasets (BLSA, InCHIANTI, and 
NHANES; 3414 subjects in total).

Before DM calculation, all variables are transformed 
as necessary (log or square root) to approach normal-
ity. For each biomarker, a single best transformation was 
identified across datasets. The Mahalanobis distance can 
become unreliable when the scales of the variables dif-
fer; we thus standardize each biomarker with respect to 
the mean and standard deviation of the RP. Because it is 
approximately log-normally distributed, we used the log-
arithm of DM in subsequent analyses.

In calculating DM, we do not give any special weight to 
any of the biomarkers over and above the weights implicit 
in the covariance matrix. Although certain biomarkers 

(1)
DM(x) =

√

(x − µ)T
−1
∑

(x − µ)



Page 5 of 14Li et al. Population Health Metrics           (2022) 20:11  

are well-known to be important for certain diseases or 
physiological systems (e.g. glucose for diabetes), there is 
no consensus that one biomarker is more important for 
general health than another; subjective weighting of indi-
vidual variables could thus introduce a bias in the metric.

Selection of variables for candidate standard DM sets
We used a multistep approach in order to select bio-
markers that respond best to the following criteria: (1) 
consistency of mean biomarker levels within and across 
populations; (2) stability of DM across various RPs; (3) 
biological signal, as measured by concordance with DM 
calculated using the full set (i.e. 31 biomarkers; DM31); 
(4) availability of biomarkers in clinical/research con-
texts; (5) diversity of physiological systems represented; 
and (6) redundancy among biomarkers. The detailed 
approach that led to our final sets of biomarkers can be 
found in Additional file 1, but, briefly, here are the four 
steps we followed:

1. We pre-selected 22 biomarkers by excluding those 
whose mean levels for various demographic subsets 
(e.g. males, females, young, etc.) differ across datasets 
or lie outside clinical bounds (criterion 1, see Addi-
tional file 1: Fig. S1).

2. We generated all possible combinations of 5 and 
10 biomarkers among the 22 pre-selected ones, for 
which we calculated (a) correlations between DM 
that uses the composite RP versus each respective 
dataset as its own RP (see Additional file 1: Table S2, 
“RP stability” columns, and Additional file  1: Fig. 
S2), and (b) the correlation with DM that uses all 31 
potential markers (DM31; see “Signal” columns in 
Additional file 1: Table S2). Here we aimed at iden-
tifying sets that were correlated as closely as possible 
with DM31 (criterion 3) while having greater robust-
ness to RP choice (criterion 2).

3. We used subjective consideration to construct two 
suites of biomarkers based on the quantitative analy-
sis performed in step 2, as well as criteria 4 and 5: a 
9-biomarker set (DM9) composed of MCH, RDW, 
platelets, RBC, hemoglobin, WBC, BASO%, HDL, 
and LYM%; and a 17-biomarker set (DM17) com-
posed of the same biomarkers as DM9, in addition to 
GGT, AST, ALKP, albumin, total proteins, calcium, 
potassium, and vitamin B12. The precise number 
of biomarkers included in each suite (9 and 17) was 
an arbitrary choice; it was rather guided by the aim 
to optimize criteria 2–5. The choice of two differ-
ent suites, however, came from a wish to provide a 
shorter suite that would be more readily available in 
various contexts.

4. We evaluated redundancy (criterion 6) among bio-
markers included in the suites selected in step 3 by 
looking at pairwise correlations (Additional file 1: Fig. 
S6); however, we did not eliminate any biomarkers 
based on this criterion. In the context of Mahalanobis 
distance, redundancy is eliminated mathematically in 
the calculation, and is thus not a concern. However, 
a good metric is likely to have markers representing 
a diversity of biological signals, so it is important to 
generate biomarker suites that are not exclusively 
among redundant markers.

Stability of candidate DM sets when calibrated via different 
reference populations
An important issue regarding DM calculation is the 
choice of the RP, which is used to calculate the cen-
troid (the biomarker combination assumed to repre-
sent optimal health) as well as the variance–covariance 
matrix. While there are widely accepted normal ranges 
for individual biomarkers, there is no consensus on a 
point-wise multivariate centroid that represents opti-
mal health status. Our previous work suggested that, 
while a younger and healthier RP could yield a slightly 
better signal, the RP should not be too demographically 
different from the study population [17]. The entire 
study population itself is generally a good approxima-
tion. While it might seem intuitive that the mean of a 
younger, healthier population should provide a better 
estimate of optimal state, many age-related changes 
in biomarkers may actually be compensations to other 
changes [41, 42], raising the possibility that age-specific 
RPs could be preferable. Since we cannot separate out 
pathological changes from compensatory changes, in 
practice all RPs will confound these two effects to some 
extent.

Our goal here was to choose biomarkers that are less 
sensitive to the choice of RP in order to eliminate the 
need to consider all these factors, and to facilitate the use 
of a single RP for nearly any study in nearly any context. 
We assessed the stability of our candidate sets within and 
across populations. To test for stability across RPs, we 
computed Pearson correlations between DM calculated 
using the study population as its own RP, or using another 
dataset as the RP. Large numbers of such analyses were 
compiled in correlation matrices, and correlation coeffi-
cients were averaged. To test for stability within popula-
tions, we divided each dataset into demographic subsets 
(by sex, age, race, education level, or marital status) and 
performed similar correlations, i.e. between DM calcu-
lated using a given subset as its own RP or using another 
subset.
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Calculation of allostatic load
AL was calculated as closely as possible to previous pub-
lications [43, 44] with the available biomarkers in InCHI-
ANTI and WHAS. We used 12 biomarkers covering 
five systems/functions: systolic blood pressure, diastolic 
blood pressure, mean arterial pressure, and heart rate 
were used to represent the cardiovascular system; inter-
leukin 6 and C-reactive protein for immune functions; 
HDL, low density lipoprotein, glucose, and insulin-like 
growth factor-1 (IGF-1) for metabolic measures; body 
mass index for anthropometric measures; and dehydroe-
piandrosterone (DHEAS) for the neuroendocrine sys-
tem. We attributed one point for each biomarker in the 
upper quartile, but in the lower quartile for IGF-1, HDL, 
and DHEAS, as previously described [43, 44]. Overall, 
AL shares only three biomarkers with DM31 (HDL, LDL, 
and glucose) and only one with DM17 and DM9 (HDL). 
Also note that biomarkers contribute to AL only if they 
are too far in one direction; they contribute to DM if they 
are far in either direction, and thus the measures would 
not necessarily be redundant even if there were substan-
tial overlap.

Association of health metrics with mortality, frailty, 
and comorbidities
To assess whether our final sets of biomarkers are 
truly representative of physiological dysregulation, we 
explored their association with mortality, clinical frailty, 
CVD, diabetes, and the number of comorbidities, in the 
two datasets where the relevant information was avail-
able (InCHIANTI and WHAS). We performed analyses 
with DM9, DM17, and DM31, all calculated using the 
composite RP, as well as with AL and SAH. To make the 
scales of DM, AL, and SAH more comparable, we divided 
each score by its standard deviation (SD).

The relationship between dysregulation scores and 
mortality was assessed using time-to-event Cox propor-
tional hazards models with age as the timescale (coxph 
function, survival package). To study the relationship 
with frailty criteria and the number of comorbidities we 
used Poisson regressions, whereas logistic regressions 
were used for individual chronic diseases (CVD and 
diabetes).

As noted above (Variables section), some health out-
comes were available only at one timepoint, and others 
at multiple time points, in ways that differed across data-
sets. When only one timepoint was available, we per-
formed cross-sectional analyses with the glm function. 
When multiple timepoints were available, we included 
all timepoints in Bayesian multi-level models control-
ling for individual identity via a random intercept (MCM-
Cglmm package [45], see Additional File 1 for details). 
Because of the complex patterns of cross-sectional versus 

longitudinal health outcome data availability, we pre-
sent all results together without distinguishing the type 
of analysis; the goal is not to emphasize any particular 
result, but to assess broad patterns of predictive power 
for different health indices on different health oucomes.

For each health outcome, three different models were 
tested: (1) models that controlled for age and sex; (2) 
models that controlled for age, sex, and metrics of physi-
cal and cognitive functions; and (3) models that con-
trolled for age, sex, and socio-economic status. Analyses 
were performed in R-3.2.2 and codes are available upon 
request.

Results
Establishment of biomarker suites
We followed a detailed procedure (see Additional file 1: 
Methods section  1.5) to choose subsets of biomark-
ers that would provide a more stable version of DM. In 
particular, we first narrowed the list of 31 biomarkers 
down to 22 by eliminating those with means that var-
ied greatly across datasets. Among these 22, we tested 
each combination of 5 or 10 biomarkers, and then evalu-
ated the impact of including/excluding a biomarker in a 
combination on (a) how robust DM was to choice of the 
RP, and (b) how closely correlated it was with the full 
31-biomarker version (Additional file  1: Table  S2 and 
Fig. S2). For example, folate introduced a strong depend-
ency of the signal on the reference population, probably 
due to fortification policies in the U.S., and was thus not 
retained in the final list. Other subject criteria (data avail-
ability, breadth of physiological representation) were also 
considered to arrive at final lists of 9 and 17 markers.

Stability of DM9 and DM17 when calibrated via different 
reference populations
We verified stability by asking whether DM was essen-
tially measuring the same thing even when calibrated 
from different RPs, e.g., does someone who has an unu-
sual biomarker profile for an Italian also have an unusual 
profile for an American? We assessed this by seeing how 
well two such versions of DM are correlated, and then 
averaging the correlations across all possible combina-
tions. Correlations higher than 0.95 indicate high preci-
sion/stability, i.e., minimal measurement error based on 
calibration. DM calculated with both final sets (DM9 and 
DM17) proved to be highly stable, i.e. the signal did not 
vary substantially across various definitions of the RP 
(Fig. 1 and Additional file 1: Figs. S3–S5). Figure 1 shows 
the stability of DM signal when interchanging RPs across 
datasets; in other words, for any given dataset (columns), 
we calculated the correlations between DM calculated by 
using itself as the RP and DM calculated using other data-
sets (lines) as the RP. DM9 and DM17 are more robust 
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than DM31 to the choice of the RP, as shown by the mean 
Pearson correlation coefficients of 0.95, 0.95, and 0.86, 
respectively obtained for DM9, DM17, and DM31. These 
results show that by restricting ourselves to biomarkers 
that vary less across different populations, we obtained a 
stable signal regardless of the choice of the RP. DM cal-
culated using various demographic subsets of the study 
population as the RP is similarly stable (mean correlation 
coefficients of 0.96, 0.96, and 0.95, respectively for DM9, 
DM17, and DM31, see Additional file 1: Figs. S3–S5).

Association of health metrics with mortality, frailty, 
and comorbidities
Figures  2 and 3, as well as Additional file  1: Tables S3 
and S4, show the associations of the various health met-
rics with health outcomes in InCHIANTI and WHAS, 
respectively. We added other well-known metrics of 

health status, namely AL and SAH, to assess how DM 
indices compare to existing ones that are widely used 
in the literature. Generally speaking, all five metrics 
(DM9, DM17, DM31, AL, and SAH) are competitive in 
their predictive ability, with some performing better in 
one analysis than another, but no clear “winner.” DM31 
generally performed a bit better than DM17, which 
performed a bit better than DM9, as expected.

All metrics are comparable for mortality prediction 
(hazard ratio ranges of 1.15–1.30, 1.21–1.36, 1.21–1.37, 
1.17–1.38, and 1.17–1.49, respectively for DM9, DM17, 
DM31, AL, and SAH, respectively); however, DM-based 
metrics tend to show less variation across datasets 
(Fig. 4).

SAH appears to be more strongly associated with 
frailty than the biomarker-based metrics: estimated 
regression coefficients were of 0.41 and 0.29, respectively 

Fig. 1 Stability of dysregulation scores across populations. For each dataset or a combined set (All), we performed correlations between 
dysregulation scores (DM) calculated using the study population (columns) as its own reference population or another dataset as the reference 
population (lines). Correlations were calculated for the three biomarker sets: 9 biomarker‑set (DM9), 17‑set (DM17), and the entire set (DM31). Mean 
Pearson correlation coefficients (r) are indicated for each set and ellipses indicate correlations visually, i.e. darker and narrower when stronger
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for InCHIANTI and WHAS, whereas other metrics only 
reached ~ 0.15 (Figs. 2–3).

In InCHIANTI, DM31 appeared to perform par-
ticularly well for CVD and diabetes prediction (odds 
ratios ranging from 1.01 to 1.85 and from 1.93 to 3.73, 

respectively), likely reflecting the inclusion of metabolic-
syndrome-related biomarkers in this version. Similarly, 
the high performance of AL for diabetes prediction (odds 
ratio ranging from 1.79 to 2.28) might be due to the 
inclusion of glucose in its calculation, as opposed to DM9 

Fig. 2 Relationships between health metrics and aging correlates in the InCHIANTI dataset. Estimations (points) together with 95% confidence 
intervals (CIs; segments) are plotted for mortality, the number of frailty criteria, cardiovascular diseases (CVD), diabetes, and the number of 
comorbidities (see text for details). Results are based on regression models adjusting for: (1) age and sex (solid lines); (2) age, sex, as well as 
physical and cognitive functions (dashed lines); or (3) age, sex, and socioeconomic status (dotted lines). For ease of comparison, each metric 
was standardized, i.e. divided by its standard deviation. Different colors refer to different health metrics and estimates are indicated on the right. 
Significant results are plotted in bold, with asterisks indicating the significance level (***p < 0.001; **p < 0.01; *p < 0.05). Abbreviations: AL, allostatic 
load; DM9, 9‑set dysregulation score (DM); DM17, 17‑set DM; DM31, 31‑set DM; SAH, self‑assessed health
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and DM17. Nevertheless, DM17 was overall a reason-
able predictor of CVD (odds ratios ranging from 1.07 to 
1.85, p < 0.05 in four out of six analyses; see Figs. 2–4), as 
opposed to DM9 (odds ratios ranging from 0.97 to 1.08, 
no significant association).

Prediction of the number of comorbidities is also rela-
tively similar across metrics, with ranges of estimated 
regression coefficients of 0–0.08, 0.03–0.16, 0.12–0.22, 
0.06–0.15, and 0.09–0.42, respectively for DM9, DM17, 
DM31, AL, and SAH (Figs. 2–3).

Fig. 3 Relationships between health metrics and aging correlates in the WHAS dataset. Estimations (points) together with 95% confidence intervals 
(CIs; segments) are plotted for mortality, the number of frailty criteria, cardiovascular diseases (CVD), diabetes, and the number of comorbidities 
(see text for details). Results are based on regression models adjusting for: (1) age (solid lines); (2) age as well as physical and cognitive functions 
(dashed lines); or (3) age and socioeconomic status (dotted lines). For ease of comparison, each metric was standardized, i.e. divided by its standard 
deviation. Different colors refer to different health metrics and estimates are indicated on the right. Significant results are plotted in bold, with 
asterisks indicating the significance level (***p < 0.001; **p < 0.01; *p < 0.05). Abbreviations: AL, allostatic load; DM9, 9‑set dysregulation score (DM); 
DM17, 17‑set DM; DM31, 31‑set DM; SAH, self‑assessed health
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Discussion
We have previously proposed a metric of physiological 
dysregulation (DM), based on statistical distance and 
relying exclusively on common clinical biomarkers [13]. 
Here we aimed to reduce the number of biomarkers used 
in its calculation so that DM can be used in contexts 
where fewer biomarkers are available (e.g. in socio-eco-
nomic studies) and to propose a version of DM that is 
highly stable across different populations, so that it can 
be easily compared across studies. We had previously 
shown that DM’s signal increases with the number of bio-
markers included, although the value of additional mark-
ers diminishes as more are added [17], and that inclusion 
of 10–15 is generally sufficient. Using solely biomarkers 
from the complete blood count, the lipid and liver pan-
els, as well as calcium and vitamin B12, we identified 

and validated two DM versions: a version using 17 bio-
markers and a shorter version that uses only 9 biomark-
ers, excluding the ones that may be slightly less common 
(GGT, ALKP, AST, albumin, total proteins, calcium, and 
vitamin B12). Nine or 17 markers may seem like a lot, 
but eight are measured together in the complete blood 
count, while HDL is highly common, and many of the 
liver proteins are measured together in a panel; many 
existing studies already have all these markers. The main 
advantage of the 9-marker version would be in second-
ary data analysis when one of the 17 markers is missing; 
in prospective studies, it should usually be feasible to 
measure all 17. Both versions proved to be highly stable 
across various definitions of the RP and to provide good 
predictions of health outcomes, though the 17-biomarker 
version performs slightly better for prediction. We thus 
propose these dysregulation signatures (“DSign”) as 

Fig. 4 Comparison of predictive performance across health metrics for various health outcomes. Bars represent the means of estimated regression 
coefficients for the three different analyses performed (see Figs. 2, 3) in InCHIANTI (blue) and WHAS (red), with the corresponding 95% confidence 
interval. For ease of comparison across health outcomes, we used the log‑hazard and log‑odds ratios. Numbers above the bars indicate the number 
of significant associations out of three analyses. Abbreviations: Comorb., number of comorbidities; DM9, 9‑set dysregulation score (DM); DM17, 
17‑set DM; DM31, 31‑set DM
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generalized, objective metrics of health state, with DM17 
to be preferred when possible.

As expected, there was no clear “winner” among met-
rics of health state to predict various health outcomes. 
Some metrics performed better for certain outcomes or 
in one or the other dataset. For example, SAH performs 
best for predicting phenotypic frailty, an unsurprising 
result given that phenotypic frailty is diagnosed based 
on physical symptoms a patient would recognize rather 
than on measurement of the underlying pathology. Like-
wise, as expected, DM31 generally performs as well as or 
better than DM17 and DM9 for predicting health out-
comes, particularly diabetes and CVD, which are related 
to some of the metabolic-syndrome-associated biomark-
ers that were eliminated in order to increase robustness 
of the signal. Nonetheless, for mortality, all metrics per-
form about equivalently. Interestingly, in most cases the 
strengths of the effects were minimally impacted by con-
trol for covariates, including socioeconomic status and 
markers of physical and cognitive functioning. This was 
true not just for versions of DM, but also AL and SAH. 
Potentially, this is due the underlying health state mediat-
ing the impacts of the covariates on the outcomes.

Health plays an important role in many study fields 
and efforts have been made in the search for robust and 
comparable health metrics. While many existing health 
metrics are good predictors of mortality, frailty and 
comorbidities, notably SAH, we believe it is meaningful 
to have an objective and continuously distributed met-
ric of general health based on continuous variables (bio-
markers). First, a continuous health metric can facilitate 
the estimation of the distribution of health states. Indi-
ces of health inequality can also be easily calculated with 
the continuous health metric. For example, the concen-
tration index has become a standard metric to quantify 
income-related inequalities [46]. Strictly speaking, the 
concentration index is an appropriate metric of socioeco-
nomic-related health inequality when health is measured 
on a ratio scale with a true zero [47]. Our health metric 
satisfies these requirements by definition, where a value 
of zero represents the ideal state of health. An applica-
tion to the calculation of the concentration index was 
illustrated in a working paper [48]. Second, a continuous 
health metric facilitates the use of certain statistical tools, 
such as ordinary least squares or instrumental variable 
regression, whose consistency relies less on distributional 
assumptions [49]. Single biomarkers have occasionally 
been used as indicators of health outcome in statistical 
models that require a continuous health variable [50]; 
however, it would be preferable to summarize the infor-
mation from multiple biomarkers into a single metric 
when measuring global health. Third, in comparison 
with subjective health metrics (e.g. self-reported health) 

or quasi-objective health metrics (e.g. composite health 
metrics constructed from survey questions) the health 
metric here could be applied more easily across different 
populations without being influenced by cultural differ-
ences or reporting habits. Indeed, several studies have 
reported differences in rating health according to gen-
der [51, 52], ethnicity [53, 54], and age [55, 56]. Last but 
not least, in keeping the biomarkers continuous during 
the construction of the health metric, we may well avoid 
loss of information associated with categorization of con-
tinuous variables [57]. In cases where the study popula-
tion is small or broadly representative of the population, 
we strongly recommend using our reference population; 
however, in cases where the study population is both 
large enough to serve as its own reference, and is highly 
specific (e.g. suffering from a particular disease, children, 
a non-industrialized tribe), we would recommend using 
the study population as the reference population.

Because the DSign metric is based on the notion that an 
“average” biomarker profile is more likely to be healthy, 
it is, at least in theory, sensitive to the characteristics of 
the reference population that is used for calibration. For 
example, one would not expect the mean glucose level 
in a population with a high prevalence of diabetes to 
be a good indicator of ideal level. While such concerns 
are indeed problematic in low dimensions (2–3 mark-
ers), as the number of markers increases, DM becomes 
less and less sensitive to precise estimation of the mean 
for each marker. This is because, in high dimensions, it 
becomes very improbable to be very close to the mean on 
all parameters, and accordingly no individual ever falls 
very close to the true multi-dimensional centroid; the 
distribution is “hollowed out.” As long as the estimated 
centroid falls within this hollowed out area, there is mini-
mal impact of misestimation. In the versions of DM pre-
sented here, this concern is even less present because we 
have specifically sought to eliminate markers that differ 
in means across reference populations. This is a key cri-
terion for stability. We nonetheless counsel caution in the 
interpretation of DM in cases where a population’s mean 
or distribution may differ markedly from the reference 
population.

It is important to note several limitations of this 
approach as well. First, we would not recommend 
application of this DSign metric to populations suffer-
ing from a specific disease. For example, a study on the 
efficacy or safety of a medication for patients on hemo-
dialysis should not rely on DM17 or DM9 as a proxy out-
come, because hemodialysis a priori represents a state 
of extreme dysregulation of multiple biomarkers [58], 
for which our standardized RP would be inappropriate 
without independent validation. Second, there are clearly 
multiple dimensions to physiological health, and any 
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single metric is by definition a crude simplification [30, 
59]. The advantages of this approach should not be used 
to gloss over the limitations of any such approach. Third, 
the advantages of this approach do not make it the best 
choice in all cases. For example, SAH may be a prefer-
able representation of health state in some cases, either 
for practical reasons (e.g. better prediction of frailty, 
empirically) or theoretical reasons (e.g. a specific interest 
in how perception of one’s health influences outcomes). 
Fourth, we do not claim that the version presented here 
is the only valid version of DM, or necessarily the best; it 
is one approach among many that appears to represent a 
nearly optimal balance of usability, stability, and predic-
tive value, but sophisticated users may prefer to develop 
their own versions based on data availability or their 
specific needs for these sometimes-conflicting factors. 
Fifth, the populations used to establish stability here, 
while from two continents, nonetheless represent indus-
trialized, Western societies. Caution should be exercised 
applying the metric to other populations, though studies 
have shown that DM does work well as a health metric in 
several provinces in Chinese mainland, in Taiwan, and in 
the Tsimane horticulturalists of Bolivia [18–20, 27]. We 
believe it would probably apply well in most contexts, but 
maybe not in populations with highly specific character-
istics (e.g. patients on hemodialysis).

Conclusions
We have developed a continuous, biomarker-based, 
standardized, validated metric of health state. While 
no single metric can be universally optimal, this metric 
presents a number of clear advantages: simplicity of use, 
ease to obtain the relevant biomarkers, predictive power 
competitive with other well-known metrics, stability 
across populations, and theoretical non-circularity. For 
many users, it will present a substantial improvement 
over previously published versions of DM, notably in its 
standardization and stability. In contexts where blood 
collection is difficult to achieve, SAH appears as reason-
able alternative to blood-based metrics, given its strong 
predictive performance in nearly all health outcomes 
studied here. We nonetheless strongly urge users of any 
generalized health metric to use caution and a nuanced 
interpretation, given the inherent challenges of using a 
single metric to measure a multi-dimensional process in 
a complex system.
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