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Abstract
Background  Mapping health outcomes related to environmental health hazards at the county level can lead to a 
simplification of risks experienced by populations in that county. The Centers for Disease Control and Prevention’s 
National Environmental Public Health Tracking Program has developed sub-county geographies that aggregate 
census tracts to allow for stable, minimally suppressed data to be displayed. This helps to highlight more local 
variation in environmental health outcomes and risk data. However, we wanted to understand whether the 
aggregation method used was aggregating sociodemographically similar or dissimilar areas with one another. This 
analysis attempts to explore whether the distributions of select people who may be at increased risk for exposure to 
environmental health hazards as identified by the Tracking Program are preserved in these sub-county geographies 
with the census tracts used as the foundation to create them.

Methods  Mean values of three sociodemographic characteristics (persons aged 65 years and older, people from 
racial and ethnic minority groups, and population below the poverty level) for each sub-county geography in five 
states were calculated and placed into five break groups. Differences in break groups were determined and compared 
for each sub-county geography and census tract.

Results  The sociodemographic characteristics among the census tracts and two aggregated sub-county 
geographies were similar. In some instances, census tracts with a low population or a highly skewed population 
(e.g., very high percentage of population aged 65 years and older) were aggregated with dissimilar census tracts out 
of necessity to meet the requirements set by the Tracking Program’s aggregation methodology. This pattern was 
detected in 2.41-6.59% of census tracts within the study area, depending on the sociodemographic variable and 
aggregation level.

Conclusions  The Tracking Program’s sub-county aggregation methodology aggregates census tracts with similar 
characteristics. The two new sub-county geographies can serve as a potential option for health officials and 
policymakers to develop targeted interventions using finer resolution health outcome and environmental hazard data 
compared to coarser resolution county-level data.
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Background
Local data are critical for understanding environmental 
health outcomes. Viewing data across smaller geographic 
units, such as census tracts, can highlight variation in 
the geographic distribution of health effects related to 
environmental health risks and exposures, which may 
be masked by larger geographic areas, like counties [1]. 
Knowing which local areas experience elevated rates of 
negative health outcomes can help develop more tar-
geted interventions [2]. The display of health data often 
includes choropleth maps, which are maps of polygons 
representing administrative units shaded to correspond 
to levels of disease incidence or another event. While 
this type of map is used frequently, a choropleth map has 
the potential to oversimplify the distribution of disease 
by communicating that the disease is evenly distributed 
in the shaded polygon or by showing abrupt changes in 
disease incidence at polygon borders [3]. This oversim-
plification can be more apparent as the size of polygons 
increases, for example, with state-level data. Additionally, 
as the size of the polygons decrease, there can be a reduc-
tion in ecological bias [4], which can alleviate the ecologi-
cal fallacy [5].

Person-level or point data would have the least amount 
of ecological bias, but this type of data has its own issues 
in environmental health. Point-data must be geocoded, 
the process of using geographic information system (GIS) 
software to match an address to a street and address in 
a digitized reference map [6]. The process of geocod-
ing addresses introduces inherent error to data that can 
affect rates of diseases when geocoding to any geographic 
boundary [6]. Addresses are more likely to be inaccu-
rately geocoded when the address contains a rural ZIP 
code [7], or more broadly as population density decreases 
[8]. Rare disease rates in rural areas may be underesti-
mated because of these factors of geocoding [9].

The National Environmental Public Health Tracking 
Program (Tracking Program) at the Centers for Disease 
Control and Prevention (CDC) began in 2002 to perform 
surveillance of risk factors and health effects associated 
with environmental hazards [10]. Most of the data that 
the Tracking Program currently collects is at the state 
or county level. However, over the last several years, 
the Tracking Program has been developing and refin-
ing its methodology related to the collection, geocod-
ing, analysis, display, and communication of sub-county 
data [11]. This includes collection of standardized census 
tract-level data including hospitalizations, emergency 
department visits, and cancer rates. While having finer 
resolution data helps to better inform environmental 
public health, data at the census tract level also present 
two key challenges: confidentiality and statistical stabil-
ity [12]. The Tracking Program has been developing a 
process to address these issues to increase the availability 

and accessibility of local environmental public health 
data at a sub-county level.

To address these challenges, the Tracking Program 
developed a process to aggregate census tracts to meet 
two minimum population thresholds, which were based 
on increasing the number of geographic units while 
decreasing instability and suppression [13]. This resulted 
in two geographic levels for aggregation — one with a 
minimum population of 5,000 persons and one with a 
minimum population of 20,000 persons. These two popu-
lation thresholds were determined to be most appropri-
ate for aggregation by Werner and Strosnider [13] out 
of nine total population thresholds tested by the Track-
ing Program, using 2010 Decennial Census data. In The 
Tracking Program’s methodology, zero-population cen-
sus tracts are first separated out from populated census 
tracts designated by the 2010 Decennial Census. These 
populated census tracts were then aggregated using 
the Geographic Aggregation Tool (GAT) [14] with the 
position of centroids for each aggregated group deter-
mined through weighting by the constituent block group 
populations for the 5,000-person minimum geography 
and by the constituent census tract populations for the 
20,000-person minimum geography. After scanning the 
input geographies, the GAT created a subset of tracts 
that did not meet the user-specified minimum on their 
own. This subset of tracts were ordered from greatest 
to least population, beginning with the area closest to 
the specified population threshold, and then the GAT 
merged with the nearest neighboring centroid. For exam-
ple, if the population threshold was 5,000, then the GAT 
ordered areas not meeting the 5,000 person threshold, 
starting the merging process at areas with a population of 
4,999. The new aggregated units were nested in their par-
ent counties to maintain existing geographic hierarchies 
and did not cross any state boundaries.

A common concern during the development of these 
new sub-county geographies was whether census tracts 
were being aggregated with similar or dissimilar census 
tracts to form the new geographic unit. To answer this 
question, an analysis was performed on select sociode-
mographic characteristics of the sub-county geographies 
to assess how they compared to the census tracts used to 
create them. The results of this exploratory analysis are 
presented here.

Methods
Data
Five states were selected for this data analysis: Arizona, 
Colorado, Florida, Maine, and New York. All are Track-
ing Program recipients who participated in the sub-
county geographic aggregation piloting through the 
Tracking Content Workgroup, whose mission is to facili-
tate collaboration between Tracking Program members 
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and partners. These states were selected as they include a 
range of characteristics such as total population, popula-
tion density, and population demographics. Using 5-year 
census tract estimates from the 2010 American Com-
munity Survey, three sociodemographic variables were 
selected to represent potential people who may be at 
increased risk for environmental health hazards [15, 16]: 
persons aged 65 years and older; all non-white including 
Hispanic population (referred to as people from racial 
and ethnic minority groups hereon); and population 
below the poverty level. Five-year estimates for total cen-
sus tract population were obtained from the same data 
source to use as the denominator for all census tracts 
within the study area [16]. 5-year Variance Replicate Esti-
mate Tables for each variable in each state in the study 
area were obtained from the American Community Sur-
vey [17], using 2010–2014 estimates due to being the data 
year most near to 2010 available.

Methodology
In each state, the proportion of the total population of 
persons aged 65 years and older was calculated for each 
census tract. Then, for the 5,000-person minimum geo-
graphic units and the 20,000-person minimum geo-
graphic units, the proportion of persons aged 65 years 
and older in these geographic units was calculated by 
taking the mean population proportion value of the 
census tracts within each of the aggregated sub-county 
geographies. More details on the Tracking Program’s 
aggregation methodology can be found in Werner and 
Strosnider [13]. By using the mean of the census tract 
population proportions, the communities of each census 
tract are preserved in the mean proportion values of the 
aggregated geographic levels. The value of each sociode-
mographic variable for each of the three geographic lev-
els were then classified by Jenks natural breaks into five 
groups using the classInt R package [18]. When plan-
ning the analysis, different methods to classify the data 
were considered, including equal intervals and quantiles. 
Jenks natural breaks aims to minimize differences within 
classes while maximizing differences between classes 
[19]. Reviewing the sociodemographic variables used in 
this analysis indicated that the distributions were often 
skewed and contained outliers. Due to these character-
istics of the data, the Jenks natural breaks method was 
used to classify the data in the analysis.

The number of classifications that each census tract 
shifted in each aggregated sub-county geography com-
pared to its original classification was then calculated 
by subtracting the higher-level geography’s classifica-
tion from the lower-level geography’s classification. For 
example, a census tract in Florida’s initial proportion 
of persons aged 65 years and older was classified into 
the third break group. In the 5,000-person minimum 

geography, the persons aged 65 years and older propor-
tion was classified into the first break group. This census 
tract’s value in the analysis was classified as two. These 
values are what served as the basis of the analysis. A dis-
similarity in aggregation was considered for census tracts 
that had a classification value change of two or more clas-
sifications. As some degree of change is expected due to 
the nature of aggregating smaller areas into larger ones, 
census tracts with a classification value change of one or 
zero were considered to be aggregating with similar cen-
sus tracts. The same methods were then applied to the 
additional selected variables: (1) people from racial and 
ethnic minority groups, and (2) population below the 
poverty level.

For each demographic variable, margins of error were 
calculated for each state within the study area using 
methodology outlined by the Census Bureau [17] and the 
2010–2014 5-year Variance Replicate Estimate Tables. 
These tables provide eighty “pseudo-estimates” that are 
used to calculate the variance of the official estimate. 
Using these replicates, new margins of error were cal-
culated for the Tracking Program’s two aggregated geo-
graphic areas for the three variables of the five states 
within the study area. These new margins of error were 
compared to the official 5-year census tract margins 
of error published by the 2014 American Community 
Survey.

In order to better understand the data, a number of 
visualizations were generated using the ggplot2 function 
package [20] in R [21]. Histograms and boxplots were 
created for each sociodemographic variable in each state, 
comparing the distribution of the variable at each of the 
three geographies. Each census tract in the study area 
was then plotted on a set of scatter plots to show the rela-
tionship of the proportion of population of each sociode-
mographic variable at the census tract or 5,000-person 
minimum geography with the larger geography The total 
number of census tracts in each state that changed by 
two or more classifications for each study variable was 
calculated to determine how often census tracts were 
being grouped with dissimilar census tracts. Extreme 
outlier census tracts were then mapped using ArcMap 
10.6.1 [22] to determine if any shared characteristics 
could be identified and whether the methodology needed 
to be refined. After review, no further refinements were 
considered.

Results
After examining the range of values across the three 
aggregation levels used in the study of the proportion 
of each sociodemographic variable, histograms showed 
that the range of proportions was generally maintained 
with similar distributions across the geographies. Fig-
ure 1 shows an example of the distribution of the below 
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poverty population amongst the three geographies 
in Arizona, with each geographic level displaying the 
same general trend in distribution. The farthest outlier 
in Arizona for the proportion of population below the 
poverty level at the census tract level was 0.81, 0.74 at 

the 5,000-person minimum geography, and 0.49 at the 
20,000-person minimum geography. Additionally, box 
plots showed that each geography had similar quartiles 
and median values for each sociodemographic variable 
in each state, though some loss of extreme values was 
shown in the higher-level geographies. Figure 2 shows an 
example of the quartile and median values for the pro-
portion of people from racial and ethnic minority groups 
amongst the three geographies in Colorado.

Two sets of scatter plots were generated to display the 
change in median values of each study variable for census 
tracts that changed by two or more classifications in each 
state. In the first set, the proportion of each study vari-
able of the census tract is along the X-axis, and the mean 
proportion of the 5,000-person minimum geography is 
along the Y-axis. Figure 3 shows an example of this type 
of plot, displaying the changes in Florida’s population of 
persons aged 65 years and older. The second set plotted 
the mean proportion of each variable for each census 
tract at the 5,000-person minimum geography along the 
X-axis and the mean proportion of the 20,000-person 
minimum geography along the Y-axis. Figure 4 shows an 
example of this second set of scatter plots, displaying the 
changes in Florida’s population of persons aged 65 years 
and older at the second aggregation level. The scatter 
plots visualize how the proportion of each study variable 
changes for each census tract as it is aggregated.

These scatter plots were used to identify census tracts 
with large changes in median values between each geo-
graphic level for further examination. When the subset of 
outlier census tracts was reviewed, it showed that these 
census tracts shared similar characteristics of being lower 
in population with a high proportion of population in 
the study variable. For example, a census tract near the 
Miami, Florida area was found to move by three classifi-
cation changes at the 5,000-person minimum geography 
compared to its base census tract proportion of per-
sons aged 65 years and older. According to our data, this 

Fig. 4  Scatter plot of persons aged 65 years and older in 5,000-person 
minimum and 20,000-person minimum geographies in Florida

 

Fig. 3  Scatter plot of persons aged 65 years and older in census tracts and 
5,000-person minimum geographies in Florida

 

Fig. 2  Proportions of people from racial and ethnic minority groups of the 
three sub-county geographies in Colorado

 

Fig. 1  Proportions of population below the poverty level of the three sub-
county geographies in Arizona
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census tract contained a population of 20 persons, 85% 
of which were aged 65 years or older. Census tracts with 
this low of a population must be aggregated with addi-
tional neighboring census tracts to meet the minimum 
population threshold for an aggregated geography, largely 
reducing the proportion of the census tract’s original 
sub-population.

The study area (comprising the five states selected) 
contained a total of 12,292 census tracts. The number 
of census tracts that were determined to change by two 
or more classifications when aggregating from the cen-
sus tract to 5,000-person minimum geography was 465 
(3.78%) based on persons aged 65 years and older pro-
portion, 297 (2.41%) based on people from racial and 
ethnic minority groups, and 499 (4.06%) based on popu-
lation below-poverty-level proportion. When aggregat-
ing from the 5,000-person minimum geography to the 
20,000-person minimum geography, 689 (5.61%) census 
tracts changed by two or more classifications for persons 
aged 65 years and older proportion, 454 (3.7%) census 
tracts based on people from racial and ethnic minority 
groups proportion, and 810 (6.59%) census tracts based 
on population below-poverty-level proportion. By com-
paring the percentage of census tracts in a state that 
changed by two or more classifications when aggregat-
ing, some outliers were identified. For example, 5.31% of 

census tracts in Maine changed by two or more classifi-
cations when aggregating to the 5,000-person minimum 
geography based on the proportion of people from racial 
and ethnic minority groups. Another instance of an ele-
vated percentage of census tracts that changed by two or 
more classifications when aggregating to the 20,000-per-
son minimum geography occurred in Maine’s persons 
aged 65 years and older. In that case, 12.57% of census 
tracts changed by two or more classifications with aggre-
gation. Table  1 presents a summary table that further 
presents these results.

The findings of the analysis as presented in Table  1 
show that the aggregation methodology performed simi-
larly in the study area for the selected sociodemographic 
characteristics. The percent of the total census tracts 
that change by two or more classifications in the census 
tract to 5,000-person minimum geography aggregation 
step and the 5,000-person minimum geography to the 
20,000-person minimum geography aggregation step is 
within reason of each other across each state in the study 
area for each sociodemographic characteristic, with some 
previously noted exceptions in specific states for specific 
sociodemographic characteristics. Within reason was 
determined by looking at the overall effect across the 
study area and variables and are presented in Table  1. 
With these results, the Tracking Program concluded that 

Table 1  Census tracts that changed by three or more classifications across all geography levels
AZ CO FL ME NY Total

Total number of census tracts (N) 1522 1249 4243 358 4920 12,292
% of total 12.38% 10.16% 34.52% 2.91% 40.03%
Census tract to 5,000-person minimum geography
Aged 65 years and older 45 47 130 13 230 465
% in stateb 2.96% 3.76% 3.06% 3.63% 4.67%
% of sociodemographic characteristicc 9.68% 10.11% 27.96% 2.80% 49.46%
Racial and ethnic minority groups 45 47 130 13 230 465
% in state 2.96% 3.76% 3.06% 3.63% 4.67%
% of sociodemographic characteristic 9.68% 10.11% 27.96% 2.80% 49.46%
Below poverty 45 47 130 13 230 465
% in state 2.96% 3.76% 3.06% 3.63% 4.67%
% of sociodemographic characteristic 9.68% 10.11% 27.96% 2.80% 49.46%
5,000-person minimum geography to 20,000-person minimum geography
Aged 65 years and older 49 144 131 45 320 689
% in state 3.22% 11.53% 3.09% 12.57% 6.50%
% of sociodemographic characteristic 7.11% 20.90% 19.01% 6.53% 46.44%
Racial and ethnic minority groups 61 49 157 24 163 454
% in state 4.01% 3.92% 3.70% 6.70% 3.31%
% of sociodemographic characteristic 13.44% 10.79% 34.58% 5.29% 35.90%
Below poverty 91 105 242 55 317 810
% in state 5.98% 8.41% 5.70% 15.36% 6.44%
% of sociodemographic characteristic 11.23% 12.96% 29.88% 6.79% 39.14%
a This represents the number of census tracts in a state that changed by two or more classifications when moving geography levels.
b The percent in state denotes the percentage of census tracts in the state that changed by two or more classifications when moving geography levels.
c The percent of sociodemographic characteristic is the percent of all census tracts in the study area in each state that changed by two or more classifications when 
moving geography levels.
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its aggregation methodology does aggregate similar cen-
sus tracts with others to create the new sub-county geo-
graphic units.

The calculated margins of error for the selected vari-
ables provided mixed results when reviewed. Margins of 
error (MOEs) for the population below poverty were con-
sistently larger than the census tract MOEs, regardless of 
the state or geographic level. MOEs for population aged 
65 and older were more narrow for both the 5,000-person 
minimum and the 20 − 000 person minimum geographic 
levels compared to the published census tract MOEs. 
Racial and ethnic minority MOEs at the 5,000-person 
minimum geographic level were more narrow than the 
published census tract MOEs for all states. Racial and 
ethnic minority MOEs at the 20,000-person minimum 
geographic level were more narrow compared to the cen-
sus tract MOEs in Colorado, Florida, and Maine. Racial 
and ethnic minority MOEs at the 20,000-person mini-
mum geographic level in New York and Arizona were 
somewhat wider compared to the published census tract 
MOEs. Figure  5 shows an example of the comparison 
done for these margins of error.

Discussion
The aim of this study was to explore how proportions 
of sub-populations in census tracts changed as census 
tracts were aggregated to meet a minimum population 
threshold for the Tracking Program’s sub-county geog-
raphies. Generally, the three sociodemographic vari-
ables that were examined across aggregation levels (i.e., 
census tracts, 5,000-person minimum geography, and 
20,000-person minimum geography) aligned with the 
distribution of these characteristics for populations at 
the census tract level for each state. However, some outli-
ers were identified, particularly in states with low over-
all proportions of the sociodemographic variable being 
explored. For example, Maine was found to have many 
census tracts being aggregated with dissimilar census 

tracts when examining the people from racial and ethnic 
minority groups variable. According to the 2010 Cen-
sus, Maine had a total white non-Hispanic population 
of 94.4% [23]. The margins of error calculated for The 
Tracking Program’s two geographic levels showed that 
the margins of error generally narrowed compared to 
the published census tract MOE in most combinations 
of variables, state, and geographic level. The widening 
of the MOEs for the population below poverty could be 
due to using a different denominator compared to the 
other variables. The Census Bureau does not determine 
poverty status for people living in group quarters, college 
dormitories, military barracks, unconventional housing 
living situations, and unrelated individuals under the age 
of 15. Due to this, the data calculated in this analysis for 
this variable were not the total population as it is for the 
other two variables examined. Due to the nature of some 
of these exemptions, a noticeable difference in popula-
tion for whom poverty status is determined may be seen 
compared to the total population such as in the case of 
college dormitories or military barracks.

The outlier census tracts were identified using the scat-
ter plots. Afterward, a follow-up examination of a sample 
of the outlier census tracts was performed to identify any 
key characteristics that might keep a census tract from 
aggregating with similar census tracts. One example of 
this was a census tract outside of the Miami, Florida area, 
which had a magnitude of three classification changes in 
the mean proportion of persons aged 65 years and older. 
This means that its 5,000-person minimum geography 
aggregated mean proportion of persons aged 65 years 
and older was much lower than the mean proportion for 
the same variable in the census tract. An examination 
revealed that this census tract had a total population of 
20 people, 85% of which were aged 65 years and older. 
Utilizing the Tracking Network’s methodology for the 
5,000-person minimum geography, this census tract had 
to combine with 4,980 residents in neighboring census 
tracts to become a new sub-county geography. Contrib-
uting a small amount of the required 5,000 population 
inherently lowered this census tract’s influence on the 
demographics of the aggregated geography. Based on our 
analysis, it is rare for a census tract with such a skewed 
proportion of population, such as the one identified, to 
be neighbored by census tracts with equally skewed 
proportions.

Out of necessity, these census tracts will have to be 
aggregated with census tracts with dissimilar sociode-
mographic characteristics. This effect was seen in 
several other areas, including Buffalo, New York and 
Tucson, Arizona. While low population census tracts 
can be found across the country for many reasons, this 
effect may be seen more frequently in areas where lower 
population census tracts are more common such as the 

Fig. 5  Histogram comparing margins of error for three sub-county geog-
raphy levels for the population below poverty in New York
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Western region of the United States. The Census Bureau 
defines census tracts as having an optimum size of 4,000 
residents [24]. Because of a lower population density and 
lack of roads or water features to serve as natural barri-
ers, the spatial size of census blocks, and by extension 
census tracts, increases in the Western region to meet 
this optimum population size [25].

Small-area public health datasets have many potential 
applications, with several state and local health depart-
ments developing proprietary geographies to suit their 
needs [26]. These methods have the potential to involve 
methodology that is not translatable for other areas to 
incorporate such as neighborhood boundaries or data 
specific to a jurisdiction. Alternatively, the Tracking 
Program’s methodology uses national datasets for its 
aggregation parameters, with sub-county boundaries 
generated for all 50 states and available for public use 
[13]. This potentially reduces the burden on state and 
local health departments for creating their own small-
area public health datasets and can be especially useful 
for communities of underserved populations that may 
be underrepresented in typical county or regional data 
[27]. These populations are often too small to calculate 
demographically stratified stable rates using the available 
data. Spatial modeling methods, such as Bayesian mod-
eling, use available observations to interpolate estimates 
into areas where data are unavailable or improve existing 
data with few observations [28]. The Tracking Program’s 
aggregation boundaries can highlight the geographic 
location of communities with few or unavailable data 
with a statistically stable total population without the 
need of modeling or estimating data. The Tracking Pro-
gram’s approach to addressing these issues in small area 
data could avoid some drawbacks of Bayesian modeling, 
such as low precision where the aggregation of census 
tracts may be needed to improve or an increase in tem-
poral aggregation [29].

Some limitations are present in this analysis. The data 
are 5-year census tract estimates produced by the 2010 
American Community Survey, while the sub-county 
geographies were aggregated using populations from 
the 2010 Decennial Census. This could potentially pro-
duce some variance in the conclusions of the analysis. 
The analysis also lacks an inferential statistical method 
to determine if there is a statistical difference in the 
sociodemographic variables at each geographic level, 
leaving only descriptive statistics used in the analysis. The 
analysis is limited in its scope. The study area was chosen 
to represent different types of states in geographic size 
and population size; it does not account for all 50 states 
of the United States. Additionally, while the sociodemo-
graphic variables chosen are populations at elevated risk 
to environmental health outcomes [30, 31], the variables 
are broad, limited to three measures, and do not illustrate 

all people who may be at increased risk for environmen-
tal health hazards; rather, these were intended to better 
understand how the sociodemographics were similar or 
dissimilar across the sub-county geographies. Consider-
ing these limitations, the Tracking Program concludes 
that these sub-county geographies are useful to serve as 
suitable boundaries for health, community, and environ-
mental data to be used in applied fields of public health.

Future steps include expanding the scatter plot analy-
sis to all census tracts in the United States to further 
explore trends or patterns in census tracts that may 
change by two or more classifications when aggregated 
to the two population thresholds. The Tracking Program 
is also exploring a third standardized geography — a 
50,000-person minimum population geography to aggre-
gate census tracts and counties – to allow for displaying 
rarer health outcomes (in the context of the Tracking 
Program) and other data.

Conclusions
Overall, the analysis presented in this paper showed that 
the Tracking Program’s methodology to aggregate cen-
sus tracts to create sub-county geographies that meet a 
minimum population threshold maintains the distribu-
tions of the selected sociodemographic characteristics 
of the census tracts, except in rare cases. The effect of 
the aggregation process on preserving the distribution 
of sociodemographic characteristics not explored in this 
analysis remains undetermined. The two sub-county 
geography types, with 5,000- and 20,000-person mini-
mum populations, can enhance the Tracking Program’s 
ability to display and visualize environmental health 
outcomes at a more granular resolution than the county 
level, offering health officials and policymakers more 
detailed information to better target populations.
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