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Abstract 

Background A comprehensive understanding of the impact of the COVID-19 pandemic on childhood nutrition 
is crucial for devising effective mitigation strategies. However, existing knowledge regarding the pandemic’s effect 
on childhood nutritional status remains limited. Furthermore, research focusing on young children aged 0–3 years 
is scarce.

Methods Leveraging the outbreak that originated in Wuhan in Dec 2019, the epicenter of China’s first and largest 
outbreak, and national survey and statistical yearbook data, this study conducted a natural experimental analy-
sis with the consideration of geographical exposure, temporal exposure and survey cohort effects to investigate 
the pandemic’s impacts on varying nutritional indicators of infants and toddlers aged 0–36 months. A comprehensive 
set of sensitivity analyses, robustness checks and falsification tests were conducted. The potential heterogeneities 
across socioeconomic and age groups were also examined.

Results The pandemic was robustly predictive of a higher weight-for-age z-score (WAZ) and length/height-for-age 
z-score (HAZ), and a lower likelihood of underweight. The effects of the pandemic on increasing WAZ and reduc-
ing underweight were more pronounced among children from economically disadvantaged backgrounds or aged 
0–12 months. Additionally, the increasing HAZ was primarily among children from households with lower family 
income. Moreover, the pandemic was negatively linked to the body mass index (BMI)-for-age z-score (BAZ) of children 
residing in more developed cities, and positively linked to overweight/obesity among children aged 13–24 months.

Conclusions This study adds to a more comprehensive understanding of the impact of the COVID-19 pandemic 
on childhood nutrition. Notably, the findings highlight that weight gain attributable to the pandemic was predomi-
nantly among vulnerable children from disadvantaged backgrounds and younger age groups, who were already 
at a higher risk of overweight/obesity before the pandemic. Consequently, our findings imply the necessity of greater 
caution to the widened gap in childhood malnutrition post-pandemic. Furthermore, the study emphasizes the impor-
tance of implementing adaptable strategies with the consideration of social justice to safeguard all children’s right 
to optimal growth from exogenous shocks and to achieve the children-related SDGs by 2030.
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Background
The effects of the COVID-19 pandemic extend far beyond 
that of a virus infection. Indirectly, the pandemic could 
pose grave risks to nutritional status through a steep 
decline in household income and a potential disruption 
of food system, routine health services and social pro-
tections, with children from less favorable backgrounds 
bearing the worst consequences [1, 2]. The prospect of 
increased child malnutrition triggered by the pandemic 
is of paramount concern [3]. According to tentative 
assumptions, because of their accompanying mobility 
and food systems disruptions, even comparatively mod-
erate and fairly short lockdown measures could lead to 
an average 7.9% decrease in GNI per capita in LMICs, 
which could subsequently translate into a shocking 14.3% 
increase in global wasting among young children aged 
0–5  years, with 80% of them being from sub-Saharan 
Africa and south Asia [3, 4]. Besides wasting, the pan-
demic is argued to heighten the risk of other forms of 
child malnutrition, even in the short term [5]. Given the 
lifelong consequences of early-life malnutrition on per-
sonal growth and development [6] and the interconnect-
edness of individual development, national well-being 
and global sustainability [7], to deny the COVID-19 cri-
sis a potentially intergenerational legacy of malnutrition 
and to preserve children’s rights to optimal development, 
a thorough understanding of the pandemic’s impacts on 
childhood nutritional status is urgently needed.

Substantive existing studies have explored the asso-
ciations between the pandemic and childhood weight 
status. Primarily because of the increased food insecu-
rity, decreased daily physical activity and heightened 
unhealthy dietary behaviors due to the pandemic [8], 
excessive weight gain, increased body mass index (BMI) 
or a higher prevalence of overweight/obesity among chil-
dren had been reported. Comparing the pooled mean 
differences in nutritional indicators between pre- and 
post-pandemic stages was frequently used as the ana-
lytic strategy [9–11]. Clear deprivation differentials were 
found with children from disadvantaged socioeconomic 
backgrounds being particularly vulnerable [8, 12]. More-
over, preventative interventions have been highlighted to 
mitigate the possibly exacerbating disparities in health 
and education attainment in years to come [2, 12]. Pre-
school-aged children (3–6  years) [10, 13], children and 
adolescents (7–18  years) [14] and young adults (18–
25  years) [15] have been the primary research groups. 
Although 0–3  years is a critical development stage for 
dietary and behavioral pattern formation and the growth 
of numerous nutritional parameters [6], little is known of 
the impact on this age range.

Although understanding the impacts of the pandemic 
on other forms of malnutrition is equally important [1, 3], 

only several studies have examined empirically the poten-
tial change in other nutritional parameters. For instance, 
in their comparative study of kindergarten children 
using multi-city data, Wen, Zhu and Ji found that dur-
ing COVID-19 school closures, height growth was more 
severely affected than weight growth [16]. Similarly, Rah-
man et al.’s purposive sampling study in Selangor Malay-
sia observed a rising stunting prevalence among children 
aged 0–5  years [3]. In contrast, Cai et  al. in their com-
parison of annual height and weight data of 3–6-year-old 
children living in Southwestern China, failed to detect 
any significant change in height growth during the lock-
down [13]. Existing evidence is limited and more studies 
are needed to understand comprehensively the impacts 
of the pandemic on various nutritional indicators besides 
weight status. Moreover, as highlighted by Seth, Gupta 
and Pingali [17], changes in weight and height status 
could be attributed to different normal growth processes 
between survey times, underscoring the importance of 
teasing out these factors in future studies.

Because of the government’s prompt implementation 
of countermeasures during the early stage of virus trans-
mission, China experienced a rapid diffusion process 
alongside an effective control process in 2020 [18]. There 
was a clear timeline for outbreak and control. Ever since 
the official report of the first identified case in Wuhan 
in late Dec 2019 [18], with early symptom onset dating 
back to Dec 1st [19] and a lack of effective countermeas-
ures until the lockdown of Wuhan city on Jan 23rd, 2020, 
the virus rapidly spread across cities, countries and con-
tinents, leading to a pandemic wreaking global havoc. 
The detection of the first case in Shenzhen on Jan 19th 
in mainland cities beyond Wuhan marked the gradual 
reporting of newly confirmed cases across cities (Fig. 1a 
and b). By Jan 23rd, 117 cities from 29 out of the 31 main-
land provincial-level administrative units had confirmed 
cases. On Jan 24th, the majority of provinces announced 
the activation of the first-level public health emergency 
response. By Jan 29th, 288 cities from all 31 provincial-
level administrative units had confirmed cases (Fig. 1b). 
With the governments’ swift and comprehensive imple-
mentation of countermeasures upon recognizing the 
virus as a human-to-human infectious disease, on Feb 
16th, controls started to rein in the virus. On March 
12th, the peak of this outbreak originating from Wuhan 
was officially declared to be over. By March 16th, curb-
ing imported cases had become the top priority. Subse-
quently, occasional resurgences were reported in local 
areas throughout 2020 (Fig.  1c). However, because of 
their limited transmission range and the implementation 
of differential suppression and mitigation strategies such 
as self-isolation and contact tracing [20], these outbreaks 
primarily affected local populations.
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As the first epicenter, this wave originating in Wuhan 
and lasting from Jan to Mar 2020 was the earliest and 
largest outbreak in China, exerting a distinct timeline 
and global influence. Given the scattered small outbreaks 
that occurred subsequently throughout 2020, in our 
natural experimental study aiming to capture the pan-
demic’s effect on child nutrition, this initial wave serves 
as a feasible research case. Leveraging nationwide survey 
data conducted in 2016, 2018 and 2020, along with daily 
recorded epidemic data in 2020 and statistical yearbook 
data, we set out to to do a preliminary natural experi-
mental analysis to assess whether this outbreak imposed 
any causal effect on varying nutritional status of infants 
and toddlers aged 0–3 years. By distinguishing between 
treated and control groups and simultaneously consider-
ing geographical exposure, temporal exposure and survey 
cohort effects, we apply the Difference-in-Difference-in-
Differences estimator (DDD) technique to investigate 
the pandemic’s effect on nutritional status. For sen-
sitivity check, a set of individual, parental, household 
and city-level characteristics are included as covariates 
and varying thresholds of epidemic risk areas are used. 
For robustness check, DDD analyses with a multilevel 
framework are conducted. Moreover, two falsification 

tests using survey data from 2016 and 2020, and 2016 
and 2018, respectively, are performed. Additionally, 
we explore the potential heterogeneities of the effects 
between varying age groups, family income groups and 
city economic development groups. The originality of 
this study lies in utilizing natural experimental analysis 
to empirically evaluate the pandemic’s impact on vari-
ous nutritional indicators of infants and toddlers aged 
0–3  years. Our main findings will provide informative 
guidance for adaptable strategies aimed at mitigating the 
deteriorating impacts of the pandemic and safeguard-
ing children’s right to optimal development from future 
exogenous shocks.

Data and analytical strategies
Data source
Survey data. Individual characteristics of infants and tod-
dlers and corresponding parental and household infor-
mation came from Wave 4 (2016), Wave 5 (2018) and 
Wave 6 (2020) of the China Family Panel Studies (CFPS) 
(http:// www. isss. pku. edu. cn/ cfps/ en/ index. htm). CFPS 
is a nationally representative longitudinal study con-
ducted every 2 years since 2010 focusing on the evolution 
of Chinese society, economy and population. CFPS is 

Fig. 1 a City-level accumulated confirmed cases by Mar 31st, 2020. b Box charts of newly confirmed cases across cities by month in 2020 (including 
both imported and local cases). c Timeline of multiple outbreaks from Apr to Dec 2020 (including mainly cities with local cases)

http://www.isss.pku.edu.cn/cfps/en/index.htm
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hierarchically designed to collect representative samples 
and information at multiple levels. Covering 25 out of the 
31 mainland China provincial-level administrative units 
and representing 95% of the population, CFPS offers the 
most high-quality and comprehensive contemporary 
China data [21].

Epidemic data. City-level epidemic data including daily 
accumulated confirmed cases and newly confirmed cases 
from the detection of the first confirmed cases outside 
Wuhan city in Shenzhen in Guangdong Province from 
Jan 19th, 2020 to Dec 31st, 2020 were used. Epidemic 
data of municipal, prefecture-level and vice-provincial 
cities were mainly provided by China Data Lab (CDL) 
(https:// proje cts. iq. harva rd. edu/ china datal ab), which 
collects data from Ding Xiang Yuan (https:// ncov. dxy. cn/ 
ncovh5/ view/ pneum onia), a professional platform in the 
medical field supplying authoritative information [18]. 
Epidemic data of county-level cities were derived primar-
ily by scraping the official notifications of local health 
commission. Given the constant report of imported cases 
since late Feb 2020, city-level epidemic data were cross-
checked with the COVID-19 data repository operated by 
the Center for System Science and Engineering at Johns 
Hopkins University (JHU CSSE)( https:// github. com/ 
CSSEG ISand Data/ COVID- 19), which aggregates local 
media and government reports to provide provincial 
level near real-time epidemic data [22]. Any contraction 
was subjected to official statistics for accuracy.

Statistical yearbook data. The 2017, 2019 and 2021 
China Statistical Yearbook (County-level) [23], the 2017, 
2019 and 2021 China City Statistical Yearbook [24], and 
the 2016, 2018 and 2020 statistical communiqué on 
national economic and social development from the offi-
cial websites of local governments were collected to pro-
vide city-level socioeconomic information.

Outcomes
Both the continuous measurements and the categori-
cal measurements of nutritional status were considered. 
Weight-for-age z-score (WAZ), length/height-for-age 
z-score (HAZ), and BMI-for-age z-score (BAZ), which 
were calculated in reference to the WHO Child Growth 
Standards (0–5 years) [25], were used to enable an explo-
ration of the nutritional status at even the extreme ends. 
To acquire a more straightforward relationship, the cat-
egorical measurements of nutritional status based on 
WAZ, HAZ and BAZ, i.e., underweight, stunting, wast-
ing and overweight/obesity, were also used. According 
to the WHO reference, WAZ with less than − 2 Standard 
Deviation (SD) was defined as “underweight”, HAZ with 
less than − 2 SD was defined as “stunting”, BAZ with less 
than − 2 SD was defined as “wasting”, and BAZ with more 
than + 2 SD was defined as “overweight/obesity”.

Exposures
Definition of exposure. Although COVID-19 has 
wreaked global havoc, we assume that its impact on 
child nutrition is restricted to mainly children residing 
in medium- and high-risk areas, where tight counter-
measures were implemented to combat the spread of 
the virus. In this study, being exposed to the pandemic 
for any duration of time was defined as exposure. We 
measure it both geographically according to the risk 
area categorization of residential areas during the trans-
mission stage, and temporally considering simultane-
ously the survey time and children’s birth time relative 
to the outbreak of the pandemic. Our research objects 
were limited to infants and toddlers aged 0–36 months 
who hadn’t been infected by the survey time. Children 
who had changed their place of residence or who were 
born between Apr to Dec 2020 in areas with any resur-
gence of infections were excluded.

Definition of the treated and the control group. Chil-
dren who were born in or before Mar 2020 and aged 
0–36  months during the survey window (born between 
Mar 2017 and Mar 2020 and surveyed between July 2020 
and Dec 2020), and children who were born in or before 
Mar 2018 and aged 0–36 months during the survey win-
dow (born between Mar 2015 and Mar 2018 and sur-
veyed between June 2018 and May 2019) were defined as 
the treated group. Children who were born between Apr 
2020 and Dec 2020 (aged 0–7 months during the survey 
window between July 2020 to Dec 2020), and children 
who were born between Apr 2018 and Dec 2018 (also 
aged 0–7  months during the survey window between 
June 2018 and May 2019) were defined as the control 
group (Supplementary Fig. 1).

D1: Survey cohort effect measured the difference of the 
control group between two survey waves and implied 
the temporal nutritional variation that could be caused 
by macro-environmental changes (D1). A binary vari-
able, “survey cohort”, implying whether a child was born 
between Apr 2020 and Dec 2020, or was born between 
Apr 2018 and Dec 2018, was implemented. It is worth 
mentioning that in this part, sampled child respondents 
from Harbin, Shulan, Beijing, Urumqi, Dalian, Qingdao, 
Kashi, Manchuria, Chengdu and Shenyang were excluded 
for the resurgence of local outbreaks.

D2: Temporal exposure effect measured the difference 
of the treated group between two waves and implied the 
nutritional change caused by whether a child had been 
temporally exposed to the pandemic and the macro-
environmental changes between two survey waves (D2). 
Subsequently, a binary variable “temporal exposure”, indi-
cating whether a child was surveyed before the occur-
rence of this outbreak (i.e., CFPS 2018, surveyed between 
June 2018 and May 2019) or after this outbreak (i.e., 

https://projects.iq.harvard.edu/chinadatalab
https://ncov.dxy.cn/ncovh5/view/pneumonia
https://ncov.dxy.cn/ncovh5/view/pneumonia
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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CFPS 2020, surveyed between July 2020 and Dec 2020), 
was created.

D3: Geographical exposure effect measured the nutri-
tional change caused by whether a child had been geo-
graphically exposed to the pandemic (D3). A binary 
variable, “geographical exposure”, i.e., being exposed 
to the pandemic for residing in the medium-/high-risk 
areas, which had a large number of cases, or not being 
exposed to the pandemic for living in the low-risk areas, 
which had null or minimal cases, were generated.

To combat the rapid transmission of the virus, Wuhan 
city was locked down on Jan 23rd, 2020. Subsequently, on 
Jan 24th, the majority of provinces announced the activa-
tion of the first-level public health emergency response. 
By Feb 12th, Chinese authorities emphasized the need for 
precise countermeasures and the adoption of differenti-
ated strategies based on specific regional conditions [26]. 
According to the State Council’s guideline issued on Feb 
18th [20], a threshold of 50 accumulated cases in county/
city regions was set to differentiate between the low-risk 
and medium-/high-risk areas. In low-risk areas, the focus 
was on forestalling imported cases and restoring nor-
malcy to production and daily life. Medium-risk areas 
should gradually resume work and production, while 
high-risk areas should be committed to prevent further 
transmission. Thus, in this study, we applied 50 accu-
mulated confirmed cases as our threshold for categoriz-
ing low-risk and medium/high-risk areas. Given that as 
the pandemic evolved, the threshold for defining risk 
areas occasionally changed (e.g., 10 accumulated con-
firmed cases had been used as the threshold during May 
2021). To ensure the robustness of our analysis, besides 
50 accumulated confirmed cases, we further conducted 
additional checks using the thresholds of 15 and 10 accu-
mulated confirmed cases.

Covariates
Individual-level sociodemographic information including 
age, gender, birth weight, gestational age, and months of 
breastfeeding were used as covariates. Moreover, paren-
tal characteristics including age, height, body mass index 
(BMI), International Standard Classification of Occupa-
tion (ISEI) and educational attainment, characteristics of 
households including urban/rural residence, family size 
and quartiles of average family income, and characteris-
tics of cities including GDP per capita and urbanization 
rate, were incorporated into the analysis (see Table 1 for 
details).

Analytical strategies
Descriptive and regression analyses. One-way ANOVA 
and cross-tabulations were used to examine if signifi-
cant differences existed between different survey years 

in childhood nutrition and demographic characteristics, 
and paternal, household and city-level characteristics. To 
visualize the age trajectories of nutritional status across 
waves, local polynomial regressions were used to regress 
children’s WAZ, HAZ and BAZ on their ages in months.

The Difference-in-Difference-in-Differences estima-
tor (DDD), which applies an appropriate counterfactual 
quasi-experimental design to derive causal effects, was 
employed [27]. Besides a comparison of the outcomes 
before and after an event between the control group 
without any exposure and the treated group with expo-
sure, DDD simultaneously considers the group effect of a 
third key dummy variable. In this study, to estimate more 
accurately the effect of the pandemic on child nutritional 
status, the variations in nutritional indicators between 
groups from different geographical areas with different 
epidemic risks (D3: geographical exposure effect) from 
varying temporal exposures (D2: temporal exposure 
effect), and belonging to different survey cohorts (D1: 
survey cohort effect) were simultaneously investigated. 
Consequently, the impact of the pandemic on childhood 
nutrition could be reasonably obtained through the dif-
ference between children with varying geographical 
exposures in the difference between children with vary-
ing temporal exposures in the difference between chil-
dren belonging to varying survey cohorts (D3-(D2-D1)) 
(Supplementary Fig. 1).

Normally, DDD is included as an interaction term 
between the dummy variables of differences in various 
models. In this study, we used multivariate regressions 
in our analyses of continuous nutritional indicators (i.e., 
WAZ, HAZ and BAZ), and logistic regressions in our 
analyses of categorical nutritional indicators (i.e., under-
weight, stunting, wasting and overweight/obesity). Tak-
ing the analyses of continuous indicators as an example, 
the equation is:

where y could be WAZ, HAZ, or BAZ, β0 is the inter-
cept, E is the dummy for geographical exposure, T  is the 
dummy for temporal exposure, A is the dummy for sur-
vey cohort, X denotes the covariates; β1 , β2 , β3 and γ1 , γ2 , 
γ3 are the coefficients of the dummy variables and their 
interactions;α is the coefficient of covariates; δ , the coeffi-
cient of the interactions between geographical exposure, 
temporal exposure and survey cohort, is the DDD esti-
mator of the impact of the pandemic on childhood nutri-
tion. For each outcome, a set of 3 models were conducted. 
Model 1 s were the null model. In Model 2 s, individual, 
parental and household information were included. In 
Model 3 s, city-level socioeconomic characteristics were 

y = β0 + β1E + β2T + β3A+ γ1E ∗ T
+ γ2E ∗ A+ γ3T ∗ A+ δE ∗ T ∗ A+ αX
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considered. Through all models, inverse probability 
weighting, which were cross-sectional weights provided 
by the original databases from CFPS, was applied.

Sensitivity, robustness and heterogeneity check. Given 
that the data in this study were hierarchically structured 
with individual observations nested within cities, some 

unmeasurable macro-sociocultural or environmental 
factors could induce more similar childhood nutritional 
status within the same city. As such, to account for the 
potential intra-cluster correlation and achieve more 
accurate standard errors, multilevel regression analyses 
with individuals clustered within cities were performed 

Table 1 Descriptive statistics of research samples by wave (Mean(SD), %)

Note: Calculated based on complete data

Variables 2016 2018 2020 All P value

Childhood nutritional information

 WAZ 0.08 (1.49) 0.23 (1.43) 0.28 (1.39) 0.19 (1.45) 0.000

 HAZ − 0.58(2.33) − 0.24 (2.23) − 0.05 (2.18) − 0.32 (2.26) 0.000

 BAZ 0.45 (2.00) 0.38 (1.91) 0.36 (1.80) 0.44 (1.93) 0.059

 Underweight 7.3 5.4 4.5 5.9 0.005

 Stunting 15.7 10.0 6.0 11.1 0.000

 Wasting 21.0 20.7 23.0 20.7 0.083

 Overweight/obesity 32.6 36.1 33.5 34.4

Childhood demographic information

 Age (month) 19.30 (10.51) 18.53 (10.03) 20.43 (10.64) 19.29 (10.39) 0.000

 Male 52.7 53.1 51.9 52.6 0.812

 Birth weight (kg) 3.26 (0.56) 3.24 (0.52) 3.23 (0.52) 3.25 (0.54) 0.295

 Gestational age (month) 9.49 (0.64) 9.47 (0.67) 9.49 (0.82) 9.47 (0.69) 0.263

 Months of breastfeeding 9.59 (5.89) 8.97 (5.87) 8.89 (6.34) 9.30 (6.08) 0.013

Paternal sociodemographic information

 Paternal age 30.76 (5.51) 31.21 (5.30) 31.42 (4.79) 31.08 (5.28) 0.010

 Paternal height (m) 1.71 (5.39) 1.72 (5.87) 1.72 (5.66) 1.72 (5.70) 0.137

 Paternal BMI 23.33 (3.44) 23.55 (3.42) 23.73 (3.36) 23.55 (3.41) 0.095

 Paternal ISEI 36.47 (15.44) 35.42 (19.18) 37.13 (18.67) 36.26 (17.63) 0.083

Maternal sociodemographic information

 Maternal age 28.58 (5.16) 29.10 (4.69) 29.67 (4.59) 29.04 (4.87) 0.000

 Maternal height (m) 1.60 (5.23) 1.60 (5.45) 1.60 (5.50) 1.60 (5.40) 0.340

 Maternal BMI 21.94 (3.46) 22.34 (3.48) 22.39 (3.31) 22.24 (3.43) 0.007

 Maternal ISEI 30.10 (21.32) 37.44 (19.14) 33.67 (22.78) 33.39 (21.28) 0.000

Parental educational attainment (Paternal, maternal)

 No formal education 8.5, 11.0 3.9, 5.7 2.8, 4.0 5.3, 7.0 0.000, 0.000

 Primary school 19.8, 18.3 13.2, 11.7 7.0, 6.0 14.1, 12.4

 Middle school 35.6, 36.3 35.7, 35.7 35.0, 33.7 35.5, 35.4

 High school 17.8, 17.1 20.9, 20.7 21.6, 21.4 20.0, 19.7

 College or higher 18.3, 17.3 26.3, 26.3 33.7, 34.9 25.2, 25.6

Household information

 Rural residence 54.5 50.4 47.3 51.2 0.001

 Family size 5.61 (2.16) 5.40 (2.11) 5.31 (2.07) 5.46 (2.12) 0.000

 Average income-1st quartile 28.3 25.9 23.4 26.2 0.006

 Average income-2nd quartile 31.0 31.3 30.3 30.9

 Average income-3rd quartile 24.3 27.0 26.0 25.8

 Average income-4th quartile 16.3 15.9 20.3 17.1

City-level information

 GDP per capita (10,000 yuan) 4.90 (4.69) 5.34 (4.77) 5.45 (4.48) 5.29 (4.55) 0.538

 Urbanization rate 53.18 (12.89) 55.46 (13.16) 60.57 (13.97) 57.65 (13.01) 0.008

 Medium-/high-risk region 33.6 31.4 31.1 32.2 0.301
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to check the robustness of our results. Moreover, to 
check the specificity of our main results, two falsification 
tests were conducted. First, instead of the 2018 data, we 
used the 2016 data to investigate whether the associa-
tions persist. Second, instead of the 2018 and 2020 sur-
vey data, a DDD examination between the 2016 and 2018 
data was performed. In addition, the potential heteroge-
neity in the associations caused by varying age groups 
(0–12 months vs. 13–24 months vs. 25–36 months), fam-
ily income groups (lower average family income (1st and 
2nd quartiles) vs. higher average family income (3rd and 
4th quartiles)), and city economic development groups 
(lower GDP per capita (equals to or below the median 
value) vs. higher GDP per capita (higher than the median 
value)) were also explored.

Missing values. Considering the not missing completely 
at random pattern of several missing values and the pres-
entation of both continuous and categorical variables, a 
combination of manual imputation, which indicated a 
convenient inference of missing values from previous or 
following survey waves, and multiple imputations using 
chained equations (MICE) with conditional imputations 
were used. We created 20 equally plausible imputations 
with MICE and applied Rubin’s rule for scalar estimands 
to do combination [28]. The Stata MP 17 [29] was used 
for analysis.

Results
Descriptive information
After several rounds of data cleansing, in our main 
analysis of the CFPS 2018 and 2020 data, information 
of 3 049 infants and toddlers, 4 500 parental respond-
ents and 2 345 households from 143 cities were finally 
included (see Fig. 2 for details). In our falsification test 
with the CFPS 2016 and 2020 data, information of 3 
020 infants and toddlers, 5 203 adult respondents and 2 
601 households from 143 cities were included (Supple-
mentary Fig. 2). In our falsification test with the CFPS 
2016 and 2018 data, information of 3 641 infants and 
toddlers, 5 382 adult respondents and 2 807 households 
in CFPS 2016 and 2018 from 147 cities were included 
(see Supplementary Fig. 3 for details).

Table 1 presents descriptive statistics of the included 
respondents in 2016, 2018 and 2020. Significant 
increases over time were observed in the mean values 
of WAZ and HAZ. In contrast, although it seems that 
the mean values of BAZ decreased with time, the dif-
ferences across survey years were not significant. Simi-
larly, as time went by, the proportions of young children 
being underweight or stunted significantly went down, 
and the proportions of young children being wasted 
or overweight/obese fluctuated with insignificant tem-
poral patterns. Regarding childhood demographic 
information, the mean ages of child respondents var-
ied slightly with differences of no more than 2 months 
across years. The proportions of male children were 
slightly higher, with no significant differences across 

Fig. 2 Flowchart depicting the processing of analytical respondents
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years. The average birth weight was 3.25  kg and the 
average gestational age was 9.47 months with no clear 
difference across years. It appears that the total months 
of breastfeeding gradually but slightly decreased from 
9.59 months in 2016 to 8.89 months in 2020.

In terms of parental information, both parental 
and maternal age had significantly slightly increased. 
The mean paternal height was 1.72  m and the mean 
maternal height was 1.60  m with no significant differ-
ence across years. The increase in paternal mean BMI 
and ISEI was insignificant. However, there was a sig-
nificant increase in maternal BMI and clear differences 
in maternal ISEI. Generally, the proportions of both 
fathers and mothers with no formal education, primary 
school education or middle school education reduced, 
and those with high school education or college or 
higher education increased. With regard to household 
information, the proportions of households residing 
in rural areas significantly decreased, the mean family 
size increased, and the proportions of households fall-
ing into the 3rd and 4th quartiles of average household 
income increased. The level of GDP per capita at the 
city level increased over time albeit with no significant 
difference, the level of city-level urbanization rate sig-
nificantly increased and there was no significant dif-
ference in the proportion of cities being categorized as 
medium-/high-risk regions.

Figure 3 depicts the growth trajectories of WAZ, HAZ 
and BAZ over time. Compared to that of 2016, given the 
substantial overlap of shaded areas, there was no signifi-
cant difference between 2018 and 2020 among children 
aged 0–24  months. Conversely, among children aged 
24–36 months, WAZ was higher in 2018 and 2020 com-
pared to that of 2016 with a small overlap of the shaded 
areas (Fig.  3a). Concerning HAZ, although there was 
considerable overlap of the shaded areas between 2018 
and 2020, compared to that of 2016, the growth curve sig-
nificantly went up for children aged 6–36 months, and it 

seems that the improvements increased by age (Fig. 3b). 
Concerning the growth trajectories of BAZ, there was no 
significant difference across years with substantial over-
lap of shaded areas (Fig. 3c).

The effects of the pandemic exposure on numerous 
nutritional indicators
Figure  4 depicts the DDD estimations of the effects of 
the pandemic on various nutritional indicators. With 
the inclusion of individual, parental, household and city-
level covariates in Model 3, the COVID-19 exposure was 
(marginally) significantly linked to a higher WAZ, with 
the coefficients being respectively 0.92, 1.16 and 0.23 
when 50, 15 and 10 accumulated confirmed cases were 
respectively used as the threshold for risk areas defini-
tion. Similarly, the pandemic was linked to a higher HAZ 
with the coefficients being 1.15 and 2.03 with 15 and 10 
accumulated confirmed cases being used as the thresh-
olds. Throughout the models, there was no significant 
association between COVID-19 exposure and BAZ 
(Fig. 4a).

Concerning the DDD estimations of categorical out-
comes, with the consideration of covariates, COVID-19 
exposure was linked to a lower likelihood of being under-
weight with 15 and 10 accumulated confirmed cases 
being used as the thresholds (Odds ratios being corre-
spondingly 0.03 and 0.09 in Model 3). There was a lack of 
any significant impact of the pandemic on stunting, wast-
ing, or overweight/obesity (Fig. 4b).

The above-mentioned impacts were generally robust. 
In our robustness check with multilevel frameworks, 
COVID-19 exposure was (marginally) significantly asso-
ciated with a higher WAZ in Models 1 and 2 with 15 
accumulated cases being used as the thresholds (coef-
ficients: 0.87 and 0.86), and a higher WAZ in Model 3 
with all definitions of the thresholds (coefficients: 0.92, 
1.19 and 0.34). In Model 3 with all covariates being con-
sidered, COVID-19 exposure was significantly predictive 

Fig. 3 The WAZ, HAZ and BAZ growth trajectories in 2016, 2018 and 2020 (Note: WAZ- weight-for-age z-score, HAZ- height/length-for-age z-score, 
BAZ- BMI-for-age z-score; shaded areas imply 95% CIs; the horizontal dashed lines represent the WHO standard median level, the vertical dashed 
line represent respectively the age of 12 and 24 months; the Epanechnikov kernel-density function was used in local polynomial regressions 
and the rule-of-thumb technique were used to select the bandwidth.)
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of a higher HAZ (coefficients: 2.10) with 10 accumulated 
confirmed cases being used as the threshold (Supple-
mentary Table A1). In our multilevel DDD estimations of 
categorical indicators, the pandemic exposure was (mar-
ginally) significantly associated with a lower possibility of 
being underweight throughout all models with both 15 
accumulated confirmed cases (odds ratios: 0.05, 0.06 and 
0.03) and 10 accumulated confirmed cases (odds ratios: 
0.09, 0.09 and 0.07) being used as the thresholds (Supple-
mentary Table A2).

In our falsification tests with the 2016 and 2020 instead 
of the 2018 and 2020 data, the marginally positive effect 
of the pandemic exposure on WAZ persist with the coef-
ficient being respectively 0.97, 0.68 and 0.21 in Models 3 

with 50, 15 and 10 accumulated confirmed cases being 
used as the thresholds. Moreover, the marginally posi-
tive effect of COVID-19 exposure on HAZ persist in 
Model 3 with a coefficient of 1.73 with 10 accumulated 
confirmed cases being used as the thresholds (Supple-
mentary Table  B1). Similarly, the negative associations 
between pandemic exposure and underweight were 
significant in Models 1 and 2 with 50 accumulated con-
firmed cases being used as the thresholds (odds ratios: 
0.08), the negative associations between COVID-19 
exposure and underweight were significant in Mod-
els 3 with all definitions of the thresholds (odds ratios: 
0.06, 0.20 and 0.54). Moreover, there were (marginally) 
significant associations between COVID-19 pandemic 

Fig. 4 The effect of the COVID-19 pandemic on various nutritional indicators of infants and toddlers (Note: C50, C15 and C10 imply respectively 
using 50, 15 and 10 accumulated confirmed cases as the thresholds of low-risk and medium-/high-risk areas.)
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exposure and wasting in Models 1 (odds ratios: 0.19 and 
0.17) and Models 2 (odds ratios: 0.19 and 0.17) with 15 
and 10 accumulated confirmed cases being used as the 
thresholds (Supplementary Table B2).

In our falsification tests with the 2016 and 2018 instead 
of the 2018 and 2020 surveys, the positive impacts of the 
pandemic on WAZ and HAZ disappeared. Instead, there 
were (marginally) significant and positive associations for 
BAZ in Models 1 (coefficients: 0.99 and 1.52) and Mod-
els 2 (coefficients: 1.01 and 1.53) with 15 and 10 accumu-
lated confirmed cases being used as thresholds. However, 
these associations no longer existed with the inclusion of 
more covariates (Supplementary Tables C1). The negative 
associations between the pandemic exposure and under-
weight mentioned earlier disappeared. Instead, a lower 
possibility of being wasted was found in Models 1 (odds 
ratios: 0.13, 0.20 and 0.13) and Models 2 (odds ratios: 
0.13, 0.19 and 0.13) with all definitions of the thresholds 
(Supplementary Tables C2).

Socioeconomic and age heterogeneities
Our heterogeneity analyses indicated further the var-
ied effects. With varying definitions of risk areas, the 
positive impacts on WAZ were significant or marginally 
significant merely among children with lower average 
family income (coefficients: 1.7, 1.76 and 0.49), from 
counties with lower GDP per capita (coefficients: 1.75, 
2.20 and 0.94), and aged 0–12  months (coefficients: 

1.16, 1.38 and 0.42). The positive effects of the pan-
demic exposure on HAZ were mainly among children 
from households with lower average family income 
when 15 accumulated confirmed cases (coefficients: 
2.07) and 10 accumulated confirmed cases (coefficients: 
2.52) were used as the thresholds. Moreover, although 
there was no significant association between COVID-
19 exposure and BAZ in the main model, the hetero-
geneity analyses indicated that among children living 
in cities with higher GDP per capita, the pandemic was 
significantly associated with lower BAZ with 15 and 10 
accumulated confirmed cases being used as the thresh-
olds (coefficients: − 3.32 and − 3.11) (Fig. 5a).

With regards to categorical indicators, the pandemic 
was associated with a lower likelihood of being under-
weight among children with lower family income when 
15 and 10 confirmed cases were used as the thresholds 
(0.01 and 0.08), and those aged 0–12 months when 50 
and 15 confirmed cases were used as the thresholds 
(0.91 and 0.04). Although no significant association 
between the pandemic and other categorical nutri-
tional indicators had been detected in the main model, 
the heterogeneity analyses detected a positive effect 
of the pandemic on the possibility of overweight/obe-
sity among children aged 13–24  months when 50 and 
15 confirmed cases were used as the thresholds (odds 
ratios: 2.48 and 2.34) (Fig. 5b).

Fig. 5 The effect of the COVID-19 pandemic on various nutritional indicators stratified by socioeconomic backgrounds and age groups (Note: Only 
estimations of Model 3 s with all covariates being included and with significant or marginally significant associations are shown. C50, C15 and C10 
imply respectively using 50, 15 and 10 accumulated confirmed cases as the thresholds of low-risk and medium-/high-risk areas.)
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Discussion
The COVID-19 pandemic may heighten the risk of all 
forms of early-life malnutrition [3]. To develop effective 
adaptive strategies ensuring children’s nutrition secu-
rity, it is imperative to evaluate the pandemic’s impacts 
on diverse nutritional indicators. Previous studies have 
mainly conducted comparative analyses to scrutinize 
changes in pre- and post-pandemic weight status among 
individuals aged 3–25 years. Yet, there is a pressing need 
for more empirical research examining a broader spec-
trum of nutritional indicators besides weight, with a 
specific focus on younger children under 3 years. Moreo-
ver, a more stringent modeling technique is necessary to 
disentangle the pandemic’s impact from the influence of 
normal growth processes. Leveraging the outbreak that 
originated in Wuhan as the case, utilizing epidemic data, 
multi-wave national survey data and statistical yearbook 
data, considering simultaneously geographical exposure, 
temporal exposure and survey cohort effects, this study 
conducted a preliminary natural experimental analysis to 
assess the causal effect of the pandemic on various nutri-
tional indicators of infants and toddlers aged 0–3 years. 
We found that the pandemic exposure was predictive of 
a higher WAZ and HAZ, and a lower likelihood of being 
underweight. These effects were generally robust to our 
sensitivity analyses, robustness checks and falsification 
tests. Moreover, our heterogeneity analyses revealed 
that the effects of the pandemic in increasing WAZ and 
reducing underweight were mainly among children from 
disadvantaged economic backgrounds or those aged 
0–12  months, and the positive association between the 
pandemic and HAZ was predominantly among chil-
dren with lower family income. The pandemic negatively 
affected the BAZ of children from cities with higher GDP 
per capita, and children aged 13–24 months exhibited an 
increased likelihood of being overweight/obese.

Our findings of the increased WAZ because of the pan-
demic align with previous viewpoints and research [1, 8, 
15, 30]. However, the reasons behind this phenomenon 
may vary across regions, households and individuals. On 
one hand, it could be caused by the increased food intake 
and decreased outdoor activities prompted by govern-
ment-mandated measures. The dramatic disruptions 
to daily routine, altered dietary habits, limited access to 
sports facilities, and heightened anxiety during quaran-
tine may lead to unhealthy food choices, increased food 
intake, and reduced physical activity [31], which sub-
sequently may cause weight gain [9]. It is reasonable to 
speculate a similar behavioral and weight trend among 
both adults and their young children. On the other hand, 
it could be due to the improved nutrition quality and 
increased family time due to the pandemic. It has been 
previously argued that COVID-19 did not threaten food 

security in China; instead, to strengthen their resist-
ance against the virus, residents enhanced their dietary 
quality by consuming more vegetables, legumes and 
aquatic products [32] and fewer fats, sugars and salts 
due to decreased dining out [16], which is beneficial to 
the growth of children. Moreover, before the pandemic, 
because of the restrictions of China’s hukou policy, 
numerous people from falling-behind regions seek jobs in 
better-off areas, leaving their children at home of origin 
with surrogate caregivers [33]. Because of the pandemic, 
the increased family time during quarantine [34] may 
have facilitated bonding activities between parents and 
their young children, fostering heightened parental care 
and emotional security, which in turn could contribute 
to overall well-being and nutritional growth. Given that 
underweight is calculated based on WAZ, the increase in 
WAZ may explain our finding of the decreased likelihood 
of underweight.

Unlike previous arguments suggesting impaired height 
growth because of the pandemic [1, 35], we found a posi-
tive link between the pandemic and HAZ. Given the multi-
faceted effects of the pandemic on health-related factors as 
discussed earlier, this finding appears plausible. Aside from 
the previously mentioned enhanced dietary quality and 
gained family time that could happen during the pandemic, 
the increase in HAZ may also stem from young children’s 
reduced exposure to illness and increased sleep duration. 
There were observed lower incidences of various infectious 
diseases such as influenza, enterovirus, pneumococcus, and 
respiratory syncytial virus among children because of the 
stringent measures during the pandemic [36, 37], which 
could lead to enhanced height growth. The longer duration 
of sleep time and daytime sleepiness during confinement 
[38] could also contribute to greater body length by stimulat-
ing the body’s production of growth hormone, a key factor in 
height growth [39].

Our heterogeneity analyses revealed significant improve-
ments in WAZ and HAZ among mainly children from 
households with lower average family incomes, chil-
dren from cities with lower GDP per capita, and infants 
aged 0–12  months. In China, among young children aged 
0–5 years, those from lower-income households or impov-
erished areas are more prone to experiencing inadequate 
weight and height growth [40]. Moreover, according to pre-
vious research [33], this group of children is more likely to 
be left behind by parents seeking job opportunities in other 
regions and may suffer more from infectious diseases. Dur-
ing home confinement and amidst stringent anti-virus 
measures, compared to children from more affluent back-
grounds, these children were more likely to enjoy increased 
family time and reduced illness compared to their usual cir-
cumstances. Moreover, it was previously found that rural 
households engaged in food-related agricultural production, 
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which typically have lower household incomes, experienced 
both decreased dietary diversity and increased dietary qual-
ity during the pandemic [32]. Since heightened parental care, 
reduced illness and improved dietary quality can all add to 
better weight and height growth, the increased WAZ and 
HAZ among children with inferior household and regional 
economic backgrounds are logical. In light of the intense 
bursts of weight growth during the first year of life with 
most babies tripling their birth weight [41], the increased 
WAZ among children aged 0–12  months during this pan-
demic wave, which lasted approximately 2 months, is plau-
sible. Considering the increased WAZ among children with 
lower family income and children aged 0–12  months, our 
finding of their decreased likelihood of being underweight is 
understandable.

Our finding of lower BMI among children from cities 
with higher GDP per capita contradicts previous studies 
that reported increased BMI in developed contexts [8, 
15]. Previous research has mainly ascribed the increased 
BMI to unhealthy food choices, increased energy intake 
and decreased physical activity because of the pandemic. 
However, as indicated before, the pandemic might gen-
erate multifaceted effects by making people more health-
conscious and more ready to embrace lifestyle changes 
to stay well [42], although true wellness may remain elu-
sive for people from disadvantaged backgrounds [43]. 
Given China’s rising overweight/obesity prevalence in 
recent years, people’s intensified awareness of health 
maintenance because of the pandemic, and the greater 
capability of individuals from more developed regions 
to pursue true wellness, our finding of decreased BMI 
among children from regions with higher GDP per capita 
is justifiable.

The finding that the likelihood of being overweight/
obese increased among children aged 13–24  months 
generally conforms to previous viewpoints. An increase 
in childhood overweight/obesity could happen due to 
several factors mentioned earlier. However, there have 
been limited previous studies investigating the impacts 
of the pandemic on the nutritional indicators of chil-
dren aged 3  years or younger. Among the few studies 
that have included children of this age group [15, 35], 
there is a lack of investigation into potential differential 
effects across varying age groups. Searching literature, 
toddlerhood, spanning from 12 to 36  months of age, is 
a critical stage for establishing healthy dietary and life-
style behaviors [44]. Probably because of the gradual 
slowdown of growth velocity at this period compared to 
the first year of life and the transition of consumption 
patterns, children aged 1–3  years are more likely to be 
overweight/obese [45, 46]. Moreover, transitioning from 
a diet consisting mainly of breast milk or formula to an 
adult-like diet, compared to that of older toddlers, the 

diet pattern of children aged 13–24 months may include 
fewer vegetables and fruit and be higher in high-calorie 
foods such as sugar and fat [47]. In this circumstance, we 
speculate that the transition of dietary patterns and the 
introduction of adult-like food have made children of the 
13–24  months age range particularly susceptible to the 
negative influence of the pandemic, thus increasing their 
likelihood of being overweight/obese. To validate this 
finding, more studies considering the differential impacts 
of the pandemic on childhood growth across varying age 
groups are required.

Previous understanding of the potential impacts of the 
COVID-19 pandemic on the nutritional indicators of 
young children aged 0–3 years is inadequate. To address 
this, using the outbreak that originated in Wuhan as a 
natural experimental case, this study primarily used the 
Difference-in-Difference-in-Differences (DDD) tech-
nique to evaluate the potential causal effect of the pan-
demic on the nutritional status of infants and toddlers, 
differentiating between varying socioeconomic and age 
groups. The originality of this study lies in applying a 
rigorous modeling technique to examine the impacts of 
the pandemic on numerous childhood nutritional indi-
cators within an under-investigated age group. By apply-
ing a natural experimental analysis, an inference of the 
potentially causal relationships between the COVID-19 
pandemic and childhood nutrition is enabled. Our find-
ings provide valuable insights for developing efficient 
mitigation strategies that consider social justice to safe-
guard children’s right to optimal growth from exogenous 
shocks. Furthermore, these insights are crucial for align-
ing efforts with the children-related SDGs for 2030.

The limitation of this study lies in three aspects. First, 
because of our limited access to epidemic data at finer 
scales, we relied on city-level data to define epidemic 
risk areas. Although the central government had pro-
vided general guidelines concerning countermeasures 
that should be taken during the transmission process, 
it is unavoidable that varying specific strategies existed 
across cities, counties, or even communities. Given that 
some counties with zero confirmed cases within a high-
risk city might take flexible countermeasures, our study 
may therefore underestimate the true impact of pan-
demic exposure on childhood nutrition. Second, lim-
ited by the survey data, our consideration of the survey 
cohort effect was confined to infants aged 0–7  months, 
our D2-D1 estimator therefore may not fully control for 
the survey cohort effect between the treated and control 
groups. However, it has been previously suggested that 
the survey cohort differentials caused by macro-environ-
ments of any age group could be similar, and be meas-
ured by the differentials between exposure areas [48, 49], 
which may partially mitigate this limitation. Third, our 
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interpretations of how the pandemic may affect child-
hood nutrition were mainly based on literature, future 
investigation into particular mechanisms is warranted 
to validate our inferences and to understand further the 
underlying pathways.

Conclusions
Using China’s first and largest outbreak of the COVID-19 
pandemic, which originated in Wuhan in Dec 2019, as a 
case, as well as national-wide survey data and statistical 
yearbook data, this study conducted a natural experimen-
tal analysis with the consideration of geographical expo-
sure effect, temporal exposure effect and survey cohort 
effect to investigate the pandemic’s impacts on the nutri-
tional status of infants and toddlers aged 0–36  months. 
Moreover, the potential heterogeneities of these impacts 
across varying socioeconomic and age groups were 
examined. We found that the pandemic exposure was 
predictive of a higher weight-for-age z-score (WAZ) and 
length/height-for-age z-score (HAZ), and a lower likeli-
hood of being underweight. The effects of the pandemic 
in increasing WAZ and reducing underweight were 
mainly among children from economically disadvan-
taged backgrounds and infants aged 0–12  months. The 
improved HAZ was mainly among children from lower 
income households. Conversely, the pandemic was neg-
atively linked to the BMI-for-age z-score (BAZ) of chil-
dren from higher GDP per capita cities, and children 
aged 13–24  months were more likely to be overweight/
obese. This study adds to a more comprehensive under-
standing of the pandemic’s effect on childhood nutrition. 
Given that weight gain due to the pandemic dispropor-
tionately affected vulnerable children from disadvantaged 
backgrounds and younger children, who were already 
at a higher risk of overweight/obesity prior to the pan-
demic, our findings imply the necessity of greater cau-
tion to the widened gap in child nutrition post-pandemic. 
In the long run, our findings can inform the develop-
ment of adaptable strategies that prioritize social justice 
to safeguard all children’s right to optimal growth from 
exogenous shocks and support the achievement of child-
related SDGs by 2030.
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