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Abstract 

Background  Incidence-based multistate models of population health are commonly applied to calculate state 
expectancies, such as a healthy life expectancy (HLE), or unhealthy life expectancy (UHE). These models also allow 
the computation of other summary indices, such as the distributions of healthy or unhealthy lifespans.

Objective  We aim to show how a multistate health model implies a multistate death distribution, giving joint infor-
mation on years lived in good and poor health. We also propose three aggregate indices of joint health and mortality 
inequality.

Methods  We propose a double-accounting approach to increment-decrement life table methods to intuitively 
derive a multistate health distribution over age and cumulative duration spent in each state. We then define a variety 
of summary lifespan inequality indices based on different distance metrics, namely Euclidean, Chebyshev, and Man-
hattan distances.

Results  We apply the method to multistate transition probabilities between health states based on the activities 
of daily living index for Italian women from the Survey of Health, Ageing and Retirement in Europe in 2015-2017. We 
demonstrate the added value of accounting for joint years lived in health states in multistate models for our under-
standing of the period health and mortality conditions from the perspective of health-specific lifespans of individuals.

Conclusions  Multivariate state distributions and summary indices derived from them give a holistic representation 
of population health inequality. We offer selected summary indices of the multivariate distribution with different 
demographic interpretations from the measures derived from univariate distributions. Although more theoreti-
cal and methodological work is required to motivate a single comprehensive population health inequality index, 
this direction is a promising path for a better understanding of population health dynamics and relationships 
between univariate statistics.
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Background
Healthy life expectancy (HLE) summarises the aver-
age life years lived in good health in a synthetic life-
table cohort, and it is used as an indicator of population 
health. HLE is most commonly calculated using the 
Sullivan method [1], which is based on cross-sectional 
health prevalence and life table data. Although the strong 
assumptions of the Sullivan method are well understood 
[2–5], it is still widely applied due to its minimal data 
requirements and computational simplicity. HLE should 
be understood as the mean of a distribution of healthy 
life years. For the Sullivan method, whereas HLE can 
be estimated for any health dimension, a healthy-years 
distribution can only be directly inferred for the case of 
health dimensions where recovery is not possible [6].

HLE and the healthy years distribution can be readily 
derived using multistate methods. Such methods (micro-
simulation, Markov chains with rewards, or increment-
decrement life tables) require detailed information on 
transitions between health states. These methods derive 
summary measures from transitions representing the 
health and mortality dynamics strictly within a study 
period, whereas the Sullivan method uses the prevalence 
of health states, which depend on the past experience 
of cohorts observed in the study period [7]. Moreover, 
multistate models are an attractive alternative to the 
Sullivan method because they are based on transitions 
between health states and they accommodate different 
mortality patterns and levels depending on underlying 
health status.

Formulas to calculate a greater variety of synthetic 
health indicators, including distribution statistics based 
on statistical moments, were given by [8]. These included 
the variance, standard deviation, and skewness of state 
occupancy times. These methods were further developed 
by [9] to derive distribution statistics, such as quantiles, 
and other synthetic measures, such as the mean waiting 
time before the first transition or final exit from a state.

We offer a new calculation approach to generate the 
state occupancy distribution time for multistate life 
tables. The method is a direct and efficient way to cal-
culate the inter-individual distribution of time spent in 
a health state as a univariate duration distribution and a 
multistate death distribution. A multistate death distri-
bution has as many time dimensions as there are health 
states. As far as we know, this is a new statistical concept 
for multistate models, although previously proposed 
matrix algebra methods [8] and microsimulation meth-
ods [4, 10] enable its calculation. We show other proper-
ties of the multidimensional death distribution, including 
a relationship to the stationary lifetable population, and 
how the variance of life lived in each health state relates 
to the variance of the total death distribution.

We give a worked example based on a small multi-
state model of limitations in activities of daily living 
(ADL), and we show a data application based on transi-
tion probabilities estimated from the Survey of Health, 
Ageing and Retirement in Europe (SHARE) [11] for 
Italian women in 2015-2017.

Methods
Notation
In our setting, the state space consists of two tran-
sient states {H,U} and an absorbing state of death 
( † ), as shown in Fig.  1. Our transition probabilities 
pij(x) = P(Zx+1 = j|Zx = i) define a discrete-time 
multistate health model, where Zx denotes the ran-
dom variable of a health state at exact age x, and Zx+1 
at exact age x + 1 . Hence i ∈ {H ,U} and j ∈ {H ,U , †} . 
We presume single-age data and omit the notation for 
the subsequent age x + 1 . For example, phu(x) denotes 
the probability of moving from the state of good health 
(H) to poor health (U) between ages x and x + 1 , phh(x) 
denotes the probability of remaining healthy, ph†(x) 
denotes the probability of dying in the age interval 
given good health at the initial age x, and so on. Transi-
tions between health states occur only once in an age 
interval, and we assume that they happen at the begin-
ning of each age step.

As we work with an initial population (radix) of 1, we 
denote the radix fraction healthy (unhealthy) as ℓH (0) 
( ℓU (0) ), such that 1 = ℓH (0)+ ℓU (0) . In the following 
formulas, the radix age of zero is the starting age of 
observation, which may be different from the chrono-
logical age of zero.

Fig. 1  State space diagram for the discrete-time health model 
considered
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The multistate survival function
Using this notation, the probability of being alive and 
healthy ℓH (x + 1) (unhealthy ℓU (x + 1) ) at age x + 1 can 
be calculated as:

These stocks can also be interpreted as the probability 
that a randomly selected person in the stationary popula-
tion resulting from the model will be x + 1 years old and 
in good (poor) health at that age, independent of their 
health state trajectory in previous ages. The survivors 
in good and poor health of a certain age add up to the 
total survivors of that age (that is: ℓH (x)+ ℓU (x) = ℓ(x) ). 
In addition, summing the respective health stocks over 
age also gives a point estimate of healthy (unhealthy) life 
expectancy, (HLE, ULE)1:

So far, we have defined the proportion of individuals who 
survived up to age x (i.e., ℓ(x) ), and among those, what 
proportion live in healthy or unhealthy states at that age 
(i.e., ℓH (x),ℓU (x) ). We now define the proportion of those 
individuals who have accumulated a certain number of 
years in good health. For that purpose, we need further 
notation. Let lowercase h and u denote the accumulated 
duration spent in the respective states H and U out of the 
x = h+ u life-years. We index the accumulated years by 
duration healthy (h) and duration alive ( x = h+ u ), and 
omit the notation for duration unhealthy. In other words, 
we are currently indexing x and h, but there is a redun-
dant third index u that we omit to keep the notation 
manageable, although it is always available. For exam-
ple, ℓH (10, 5) = ℓH (x = 10, h = 5) reads as the stock of 
radix + 10-year-olds who are currently healthy and have 
been healthy for a total of five accumulated years (either 
continuously or discontinuously). ℓU (10, 5) are those ten 
years older than the radix age, with five accumulated 
healthy years (either continuously or discontinuously), 
but that are currently unhealthy. Again, we index age 
starting at the radix with x = 0 and we set all cumulative 
healthy (unhealthy) years to zero at the initial radix age.

(1)
ℓH (x + 1) = ℓH (x) · phh(x)+ ℓU (x) · puh(x)

ℓU (x + 1) = ℓU (x) · puu(x)+ ℓH (x) · phu(x) .

(2)

HLE =
∑

x

ℓH (x)

ULE =
∑

x

ℓU (x)

LE = HLE + ULE .

According to this notation, the proportions of healthy 
and unhealthy in the radix are:

To calculate the remaining stocks, we iterate condition-
ally up age and duration within age per (4), noting that 
h ≤ x . This means that, in an age step, x always incre-
ments, but health duration h only increments if the des-
tination state at the next age step is good health. Notice 
that the notation here assumes that transitions are struc-
tured by age rather than by age and duration. If double-
indexed transition probabilities (age and duration) were 
available, one needs to be careful to either ensure dura-
tion-dependence is estimated over accumulated time, or 
else modify formulas to allow for spell-specific age-dura-
tion dependence.

In words, ℓH (x + 1, h+ 1) is the health stock at age x + 1 
and health duration h+ 1 . It consists of those healthy 
at exact age x that have h accumulated years healthy 
( ℓH (x, h) ) and that stay healthy (in the stationary popula-
tion share of those out of ℓH (x, h)  is phh(x) ), plus those 
having accumulated the same amount of healthy years 
by age x (h) but that are unhealthy at age x ( ℓU (x, h) ) and 
then move to good health ( puh(x)).

In the second Eq. of (4) we have survivors in each 
health state with the same age x and accumulated healthy 
years h, who advance to poor health in the next age. In 
this case, we increment age, but h stays the same.

The following relationships hold:

In words, the overall stock of individuals aged x with h 
accumulated years healthy ( ℓ(x, h) ) is the sum of those 
with matching age and healthy years indexes irrespec-
tive of the current health status. Aggregating ℓ(x, h) over 

(3)
ℓH (0, 0) = ℓH (0)

ℓU (0, 0) = ℓU (0) = 1− ℓH (0) .

(4)

ℓH (x + 1, h+ 1) = ℓH (x, h) · phh(x)+ ℓU (x, h) · puh(x)

ℓU (x + 1, h) = ℓH (x, h) · phu(x)+ ℓU (x, h) · puu(x) .

(5)

ℓ(x, h) = ℓH (x, h)+ ℓU (x, h)

ℓ(x) =

x
∑

h=0

ℓ(x, h)

HLE =

ω
∑

x=0

x
∑

h=0

ℓH (x, h) =

ω
∑

x=0

ℓH (x)

ULE =

ω
∑

x=0

x
∑

h=0

ℓU (x, h) =

ω
∑

x=0

ℓU (x)

LE =

ω
∑

x=0

ℓ(x) = HLE + ULE .

1  These expectancies can be more refined or precise by making functional 
approximations of l(x) for the interval between x and x + 1 , e.g. as a linear 
approximation of exposure, similar to what we do for lifetable exposure L(x) 
in lifetable calculations.
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accumulated years healthy gives the stock ℓ(x) , which is 
the overall survivor function. Finally, HLE is the sum over 
age and duration of the stock of those with current-status 
healthy ( ℓH (x, h) ). This means that those who are alive 
with h years healthy at age x ( ℓ(x, h )) are also alive in the 
whole age interval [x, x + 1) . In a life-table notation, this 
means that L(x, h) = ℓ(x, h) and L(x,u) = ℓ(x,u) . This 
shows HLE, ULE, and by extension life expectancy, to be 
a sum of healthy and unhealthy years accumulated over 
the lifespan by age, state, and total duration.

Other life table quantities
As in the stationary population derived based on this 
model L(x, h) = ℓ(x, h) , the proportion of the stationary 
population that is healthy and aged [x, x + 1) is

The quantity C(x,  h) gives the stationary age-duration 
distribution i.e., the probability that a randomly selected 
individual from the stationary population is of a particu-
lar age x and has accumulated h years in good health. 
That is, it gives the hypothetical census distribution of 
accumulated years lived in good health, a 2-D version 
of the more well-known life-table stationary population 
[12].

The probability that an individual from the radix popula-
tion dies at age x with h years of healthy life accumulated is 
then:

If a limit to the lifespan is set at x = ω , i.e. 
ph † (ω) = pu † (ω) = 1 , then 

∑∑

d(x, h) = 1 , and 
d(x,  h) is the probability distribution of a two-dimen-
sional random variable of distribution of years lived ( X  ) 
and healthy years accumulated ( H ), implying a third ran-
dom index variable U = X −H.

Let us denote the joint probability distribu-
tion (or two-dimensional death distribution) as 
d(h,u) = P(H = h,U = u) . It is an arbitrary choice which 
two variables out of { X ,H,U } we decide to call dimen-
sions. We denote the marginal probability distribution 
d(x) = P(X = h+ u) for the total number of years lived, 
d(h) = P(H = h) for healthy years, and d(u) = P(U = u) 
for unhealthy years. The following formulas define the mar-
ginal distributions:

(6)C(x, h) =
ℓ(x, h)

LE
.

(7)d(x, h) = ℓH (x, h) · ph†+ ℓU (x, h) · pu† .

The first moments (means) of these marginal dis-
tributions return the state-specific and overall life 
expectancies:

Lifespan inequality measures
One may calculate other moments of these marginal dis-
tributions as [8], or flexibly derive inequality measures 
analogous to standard lifetable inequality measures, such 
as variance, Theil, or Drewnowski indices [13], and fur-
ther decompose them to quantities of interest. For exam-
ple, the total variance in the number of years lived can be 
decomposed as:

where

Rather than list the various possible one-dimensional 
lifetable inequality indices that one could calculate on 
the three marginal distributions, we propose a few simple 
indices that might be used to summarize variability (or 
inter-individual inequality) in the two-dimensional dis-
tribution. That is, given a distribution on a simplex over 
(h, u, x), how might one reduce this information to a sin-
gle index using some notion of distance from the simplex 
mean point (HLE, ULE, LE)?

(8)

d(x) =
∑

h

d(x, h)

d(h) =
∑

x

d(x, h) =
∑

u

d(h,u)

d(u) =
∑

h

d(h,u) =
∑

x

d(x,u) .

(9)

LE =
∑

x · d(x)

HLE =
∑

h · d(h)

ULE =
∑

u · d(u) .

(10)Var(x) = Var(h)+ Var(u)+ 2 · Cov(h,u) .

(11)

Var(x) =
∑

(x − LE)2 · d(x)

Var(h) =
∑

(h−HLE)2 · d(h)

Var(u) =
∑

(u− ULE)2 · d(u)

Cov(h,u) =
∑∑

(h−HLE) · (u− ULE) · d(h,u) .
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The different notions of distance used in Eq.  12 are 
explained visually in Fig. 2.

We consider the interpretations and shortcomings of 
such indices in the Discussion section.

Empirical illustration
The aim of the empirical illustration is to demonstrate 
the added value of accounting for joint years lived in 
health states in multistate models for our understanding 
of period health and mortality conditions.

Data and methods to derive transitions between health 
states
Our empirical application is based on waves 6 and 7 of 
the Survey of Health, Ageing and Retirement in Europe 
(SHARE) [11, 14] for Italian women in 2015-2017. Health 
states are operationalized using information on limita-
tions in activities of daily living using the ADL indica-
tor, which asks respondents if they have difficulty with 
the following activities: 1. Dressing, including putting on 
shoes and socks; 2. Walking across a room; 3. Bathing or 
showering; 4. Eating, such as cutting up food; 5. Getting 
in or out of bed; 6. Using the toilet, including getting up 
or down. We use a binary summary of these responses, 
which categorizes responses into those with no difficulty 
(H, in our state space) versus difficulty with at least one 
activity (U). We apply individual cross-sectional weights 
for wave 6, as the longitudinal weights do not include 

(12)

IneqEuclidean(h,u) =
∑∑

dh,u ·
√

(h−HLE)2 + (u−ULE)2)

IneqChebyshev(h,u) =
∑∑

dh,u · argmax(|h−HLE|, |u− ULE|)

IneqManhattan(h,u) =
∑∑

dh,u · (|h−HLE| + |u−ULE|) .

weighting scores for deaths [15]. The sample consists of 
2766 individual observations.

Transition probabilities between health states are esti-
mated with a discrete-time Markov-chain model. We 
estimate yearly transition probabilities between the 
functional states, with death as an absorbing state, using 
a multinomial logistic regression model and assum-
ing an embedded Markov chain (EMC), which follows 
the approach originally proposed by Laditka [10]. In the 
EMC model, the probability of an observed sequence of 
functional status transitions at the interview is expressed 
as a product of possible single-period (e.g. monthly, half-
yearly) transition probabilities. Next, the single-period 
transition probabilities are estimated using maximum 
likelihood methods. The idea behind the model is that 
we only observe a snapshot of health status at the time 
of the interview, although transitions between health 
states might occur more often than the interview waves, 
which creates bias by limiting our observation of short-
duration spells [16]. We assume that in the long run, the 
prevalence of health states resulting from the disable-
ment-recovery processes converge to a stable distribu-
tion of a given functional form and that the observations 
are snapshots from this distribution. We use the IMaCh 
(interpolated Markov chain approach) computer pro-
gram developed by Brouard, Liévre, and others [7], based 
on the EMC assumption, to estimate transition prob-
abilities between the functional states. The transition 
probabilities are estimated using multinomial logit func-
tions, assuming log-linear age dependence. Transitions 
between health states are estimated for ages 50-90 years 
and then projected to older age groups (up to age 110) 
based on the estimated transition models.

The resulting transition probabilities are as seen in 
Fig. 3.

Results
Figure  4 shows the multistate death distribution on the 
simplex plane of healthy years, unhealthy years, and age 
at death. A given point on this plane represents a lifetime 
total accumulation of healthy and unhealthy years. Color 
levels and contours represent the 2-D death density. We 
label the respective state expectancies and remaining life 
expectancy at age 50. These expectancies match those 
calculated in the standard way, and they converge on the 
same point.

For this health definition, the density is highest along 
the boundary 0 < u <= 1 , due to the very high mortality 
among those with functional limitations and hence low 
probability to accumulate many unhealthy years prior to 
death.

Figure  5 shows the marginal distributions d(h), d(u), 
and d(x), following Eq.  (8). The age distribution d(x) is, 

Fig. 2  Diagram of three distance measures considered in Eq. (12). 
Notes: The 45◦ diagonal displacements for Chebyshev are exactly 
1 step each, such that the hypotenuse is not accurately depicted, 
similar to cohort time steps on a standard Lexis diagram. The paths 
drawn for Manhattan and Chebyshev distances are illustrative 
examples, as different paths are possible, each with the same 
respective total length
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in our case, the diagonal margin of Fig.  4. For the pre-
sent case, inequality in unhealthy appears far lower than 
inequality in healthy years (see Table  1). Indeed, since 
most of life is spent disability-free, inequality in healthy 
years accounts for most inequality within the death 
distribution.

Holistic inequality based on each of the distance meas-
ures in Eq. (12) are given in Table 2

We expect the indices of Table 2 to correlate with one 
another, and to generally map to a holistic summary of 
health inequality over the life course, but only the Man-
hattan distance offers a demographic interpretation. 
Specifically, we might prefer a distance measure that is 
consistent with possible transition trajectories. Unlike 
movements on a Lexis diagram, where an individual life 
course snaps to a cohort diagonal to increment age and 
time upward, an individual life course in our multistate 
coordinate space (refer to Fig. 4 and Fig. 2) can only move 
rightward (increment h) or upward (increment u) in a 

single time step. These are possible Pac-Man (or rook) 
moves, with the restriction that in a given move either h 
or u must increment. To derive an inequality statistic, we 
estimate an average of distances traversed for a synthetic 
cohort. Of the indices we present, only the Manhattan-
based index is consistent with these restrictions. Spe-
cifically, the Manhattan distance tells us the minimum 
number of transition swaps required to move from a 
given point (h,  u) to the mean (HLE,  ULE). This metric 

does not consider the effort or costs that it would take to 
swap a transition. Put differently, the Manhattan inequal-
ity index treats increments in h or u in equivalent (year) 
units, with no weights.

Two of these inequality measures have lifetable analogs. 
The 2d Manhattan distance is exactly equal to the mean 
absolute deviation (MAD) of the overall multistate life-
table (i.e. MAD calculated using d(x) of Eq. (8)) although 
the multistate MAD is decomposable into healthy and 
unhealthy parts. The 2d Euclidean inequality index is 
analogous to, but always smaller than, the lifetable stand-
ard deviation [17]. The 2d Chebyshev index has no lifeta-
ble analog yet.

Discussion
We propose a new multistate method to calculate the 
components of within-population health inequality 
based on life table calculations over two simultaneous 
timescales: years lived in good health (h) and years lived 
in poor health (u). These calculations yield a multistate 
survival distribution and a multistate death distribution, 
each obtained from health and mortality transition prob-
abilities, as often used for multistate expectancies. These 
new multistate constructs have the potential to better 
reflect within-population health disparities over the syn-
thetic life course. Visualizing the multistate death distri-
bution in and of itself reveals disparities in healthy and 
unhealthy life years and it might enable valuable insights 
into morbidity compression. To illustrate these concepts, 

Fig. 3  Transition probabilities for a multistate model, where U 
represents the presence of limitations according to the ADL indicator, 
and H represents the absence thereof. Italian women, 2015-2017. 
Notes: Healthy=free of limitations according to ADL indicator; 
Unhealthy=with limitations Source: Own estimations based on data 
from SHARE [11, 14]

Fig. 4  A bivariate distribution of healthy and unhealthy years lived, 
dh,u . Data: SHARE [11, 14] Italy, females, ADL measure, 2015-2017. 
Labeled points include HLE (Healthy Life Expectancy), ULE (Unhealthy 
Life Expectancy), and LE (Total Life Expectancy)
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we use SHARE data from Italy. We calculate the multi-
state death distribution (Fig. 4), and its marginal distribu-
tions (Fig. 5).

From the state-specific marginal death distributions, 
one can calculate well-known 1d inequality statistics, 
such as the standard deviation or variance of years lived 

in a state. State variances relate to the total variance of age 
at death plus a covariance term (see Eq.  (10)). This well-
known but satisfying relationship relates the multistate 
death distribution to the standard life table death distri-
bution d(x), which is the diagonal margin of the simplex 
displayed in Fig. 4. The relationship allows a demographic 
explanation: If, on average, those with a longer healthy 
lifespan are also among those with a shorter unhealthy 
lifespan (i.e., if we observe a negative covariance), then 
lifespan inequality is lower than the sum of inequal-
ity in healthy and unhealthy years. This relationship has 
important implications for research on inter-individual 
health inequalities in populations, as it demonstrates that 
individual-level conclusions concerning the relationship 
between the quantity and quality of years lived cannot be 
drawn based on the aggregated data results. For exam-
ple, in a society where long-lived individuals also have 
exceptionally long healthy lives compared to short-lived 
individuals, the resulting inter-individual inequalities in 
quality-adjusted lifespans are together much greater than 
what the marginal lifespan inequality would tell us.

Also, the correlation, based on the covariance, between 
individual healthy and unhealthy life years is an impor-
tant measure of population health. The ability to calcu-
late the covariance, and hence the correlation, between 
health state occupancy times depends on the joint death 
distribution calculations of Eq.  (7). As life expectancy 
increases, changes in the correlation between health state 

Fig. 5  Three marginal distributions derived from dh,u , per Eq.(8). Data: SHARE [11, 14] Italy, females, ADL measure, 2015-2017. Distributions depicted 
include d(h) (the death distribution by healthy years lived), d(u) (death distribution by unhealthy years lived), and d(x) (the lifetable age distribution 
of deaths)

Table 1  Means, variances and standard deviations 
corresponding to the three densities shown in Fig. 5. Source: 
Own estimations based on data from SHARE [11, 14]

Healthy=free of limitations according to ADL indicator; Unhealthy=with 
limitations

 Italian women, 2015-2017. Noting that the covariance is 0.12, Equation (10) can 
be verified

Expectancy (sd) var sd

HLE 30.90 65.07 8.07

ULE 5.77 26.13 5.11

LE 36.16 91.45 9.56

Table 2  Holistic inequality indices of health and mortality, based 
on the joint distribution d(h, u) per Eq. (12)

Euclidean distance is as the crow flies, Chebyshev is the Queen distance, and 
Manhattan is the Rook distance

Euclidean Chebyshev Manhattan

8.25 7.55 10.40
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occupancy times can answer the question of whether 
observed increases in length of life are associated with 
more healthy years and, hence, a smaller proportion 
of unhealthy years. This result would be indicated by a 
stronger negative correlation between individual healthy 
and unhealthy years of life. From our limited testing of 
transitions derived from other health conditions and 
datasets, the covariance can, in practice, turn out to be 
either positive or negative. We infer that conditions with 
high lethality penalties and low recovery will likely lead to 
negative covariance, although this relationship remains 
to be formalized. The key point is that a given set of mar-
ginal distributions of healthy and unhealthy life years is 
compatible with many joint distributions. Information 
on the covariance between healthy and unhealthy years 
should complement our assessments around the process 
of morbidity compression and that statistics belonging to 
the marginal distributions (HLE, ULE) are necessary but 
insufficient metrics.

We speculate that the elements of Eq. (10), or some 
transformation of them, might serve as useful input 
parameters (among others) for models that aim to trans-
form Sullivan parameters (a lifetable and the prevalence 
of some condition) [1] into incidence parameters [c.f. [18, 
19]]. This undertaking is left for future research.

In our example, the margin d(h) accounts for most of 
the variance in d(x), whereas the distribution of years 
lived in poor health d(u) is relatively compressed (See 
Fig. 5). A compressed distribution of unhealthy years d(u) 
is consistent with end-of-life (thanatological) conditions 
previously identified by [20], which arise when large mor-
tality differences are observed between states, especially 
when recovery rates are also low. Although on a differ-
ent scale and different metric, this relationship indirectly 
coheres with the between-country analysis of [21], where 
most between-country variability in life expectancy was 
accounted for by variation in HLE, whereas between-
country variability in ULE was far lower. We might con-
sider the schematic relationship between d(h) and d(u) to 
be the within-population analog of the findings in [21]. 
The finding that variation in d(h) is greater than d(u) in 
our application is for absolute measures, but it might not 
hold for relative measures.

Also coherent with our findings, Luy [22] proposed the 
CroHaM (cross-sectional association between health and 
mortality) hypothesis, suggesting that LE positively cor-
relates with spending less time in health states with high 
mortality penalties and more time in states characterized 
by chronic conditions with lower mortality penalties. 
Nielsen et  al. [23] demonstrated that the time spent in 
non-frail states (states with low mortality penalties) has 
increased over the past decade, while frail life expectancy 

remained unchanged. Solé-Auró and Gumà [24] and Car-
reras et  al. [25] studied age, geography, and education 
strata using multistate modeling. Their findings show 
that mortality varies less across these strata than other 
transitions, such as disease onset. Boissonneault and 
Rios [26] found that working life expectancy with man-
ageable chronic conditions like hypertension or arthritis 
increased over 14 OECD countries. This highlights the 
potential role of ULE (with low mortality penalties) in 
explaining longevity growth in low-mortality countries 
and the corresponding inequality in LE across popula-
tions. These findings should condition our observation 
that inequality in healthy life years within populations 
explains the majority of overall lifespan inequality: The 
statement should hold more strongly for health condi-
tions with high mortality penalties, such as the ADLs in 
our data application.

We define three synthetic inequality indices intended 
to summarize the rich information in the multistate 
death distribution (Eq. (12)). These indices differ in their 
treatment of distance between a given pair ((h, u)) on the 
multistate death distribution and the distribution mean 
(where HLE, ULE, and LE meet). While these indices 
may be useful in practice, we think these and alternatives 
should be further investigated.

Limitations
The transition probabilities we use in Eq. (4) in our 
empirical application rely on the Markov assumption. 
This simplifies our analysis but does not fully capture 
the complexity of health trajectories. Although the mean 
point of the multistate death distribution (HLE,  ULE) 
is well-identified, even if the generating process is not 
strictly Markovian ([27–29]), the shape of the distribu-
tion (and its resulting inequality statistics) may be biased, 
for instance, if transition probabilities vary according 
to a second unrecognized duration timescale. Equa-
tion (4) could directly account for duration dependence, 
for instance, by simply adding a duration index to the 
transitions. In this case, one must be careful about how 
duration is defined. In our formulas, duration means 
cumulative lifetime duration, whereas most work on 
estimating transitions with multiple timescales refers to 
the duration within episode [30–35]. These two defini-
tions of duration are the same only if health transitions 
are irreversible. Most data sources do not allow the direct 
estimation of transitions by both age and cumulative life-
time duration spent in different states for models with 
reversible health transitions. This would require a very 
long panel or register data series with sufficient detail to 
capture recoveries. For transition probabilities, a within-
episode duration clock is likely to better articulate risk 
profiles than cumulative lifetime duration. Equation  (4) 
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would need further modification to use double-indexed 
transitions using a within-episode definition of duration.

Conclusions
In a multistate health model, a death distribution can 
be calculated as a joint distribution of total life lived in 
each state. Previous matrix algebra derivations of the 
marginal healthy years distribution [8] did not point 
out the multidimensional death distribution as such, 
nor how these relate to the lifetable death distribution. 
We propose a demographically intuitive derivation of 
these quantities using lifetable logic.

A concise variance-covariance relationship relates 
the marginal distribution to the overall lifetable death 
distribution. Other inequality indices could be cal-
culated on the joint health distribution; these mostly 
lack demographic appeal, although an inequality meas-
ure based on Manhattan distance from the joint mean 
point has a clear interpretation as a minimum number 
of transition swaps to reach the mean. We suggest visu-
alizing a multistate death distribution as a good way to 
explore and understand morbidity compression.
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