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Background
Isolating infectious or potentially infectious cases is a key 
risk-mitigating public health intervention for infectious 
diseases. These interventions seek to reduce transmis-
sions to lower the burden of a disease within a popula-
tion. They range in intensity from targeted quarantining 
to social distancing and lockdowns. The reproduction 
number ( R) is a useful epidemiological metric of trans-
missibility relevant to isolation interventions. R0 is 
the basic reproduction number. It expresses the aver-
age number of secondary cases generated by an average 
infected individual throughout the infectious period, 
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Abstract
Background We have previously developed and reported on a procedure for estimating the purported benefits of 
immunity mandates using a novel variant of the number needed to treat (NNT) which we called the number needed 
to isolate (NNI). Here we demonstrate its broader properties as a useful population health metric.

Main body The NNI is analogous to the number needed to treat (NNT = 1/ARR), except the absolute risk reduction 
(ARR) is the absolute transmission risk in a specific population. The NNI is the number of susceptible hosts in a 
population who need to be isolated to prevent one transmission event from them. The properties and utility of 
the NNI were modeled using simulated data and its model predictions were validated using real world data. The 
properties of the NNI are described for three categories of data from a previous study on transmissibility of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2): (1) in different settings, (2) after a specific exposure and (3) 
depending on symptomaticity status of susceptible hosts.

Conclusions We provide a demonstration of the utility of the NNI as a valuable population health metric to quantify 
the transmission reductions from isolation interventions.
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assuming no immunity in the population and no utili-
zation of risk-mitigating interventions. Over time more 
people develop immunity (e.g., vaccination, infection) 
and risk-mitigating interventions may be used, which 
reduces the proportion of susceptible hosts (e.g., unvac-
cinated individuals). As a result, the effective reproduc-
tion number ( Rt) expresses R at time t in a population 
of susceptible and non-susceptible hosts. Rt will always 
be less than R0 since the latter assumes an entirely sus-
ceptible population. R is an abstraction about the trans-
missibility of an infectious disease and must be estimated 
using mathematical models. R is a helpful metric for 
public health because it expresses disease transmissibil-
ity and helps assess the impact of interventions (e.g., vac-
cination, isolation). When R > 1, the number of cases is 
increasing, such that the infectious agent can establish 
itself within the population. If R < 1, then it cannot and 
dies out. Accordingly, interventions can be evaluated 
based on the extent to which R is reduced.

While R provides valuable information about trans-
missibility and the impact of public health interventions, 
it does not indicate how many susceptible hosts need to 
be isolated to reduce transmissions in a population. For 
this purpose, the number needed to treat (NNT) may 
be a helpful statistical analog. The NNT is 1 divided by 
the absolute risk reduction (ARR) of an intervention. 
The NNT is the number of patients who need to receive 
a treatment (e.g., statins) to prevent one outcome (e.g., 
myocardial infarction) in a given time frame. In this com-
ment, we discuss a population health metric analogous to 
the NNT, which we termed the number needed to iso-
late (NNI). We have previously used this metric to esti-
mate the purported benefits of immunity mandates [1]. 
Here we would like to generalize it and demonstrate its 
broader applicability as a population health metric using 
a case example.

The number needed to isolate (NNI)
NNI quantifies how many susceptible hosts need to 
be isolated to reduce transmissions in a population. In 
other words, it is based on the potential transmission 
risk which susceptible hosts (e.g., unvaccinated individu-
als) pose to others in order to shed light on the benefits 
of isolation measures may have which specifically target 
this population (e.g., immunity mandates). Its difference 
from the NNT is that the ARR of the NNI is the absolute 
risk (AR) of a transmission ( ARtr) in the population for 
a given type of situation (e.g., setting, exposure, status, 
etc.). The rationale for the NNI is that isolation interven-
tions isolate susceptible hosts from a situation, such that 
the ARR is the ARtr  for that category:

 
NNI = 1

ARR
= 1

ARtr

The ARtris the AR within a given timeframe of a trans-
mission event for each category of interest (e.g., specific 
setting, exposure, status, etc.) from a susceptible host in 
the general population. The reciprocal of this probability 
is the NNI. The NNI is the number of susceptible hosts 
in a population who need to be isolated on a given day to 
prevent one transmission event.

The NNI pertains to the transmission risk of hosts who 
are susceptible to infection because they lack immunity 
through prior infection or vaccination. Given this, the 
NNI pertains to a population of individuals who, by defi-
nition, are uninfected. This means that the NNI is esti-
mating a potential risk rather than an actual risk. That is, 
susceptible hosts are individuals who could potentially 
become infected and then transmit an infection rather 
than actual hosts or their contacts. The reason why the 
NNI focuses on potential risks is that this is what isola-
tion measures such as immunity mandates are focused 
on (i.e., they isolate potentially risky individuals from 
certain settings based on their immunity or vaccine sta-
tus rather than their actual infectious status). The NNI 
attempts to quantify the risk reduction gained from isola-
tion methods that isolate uninfected, susceptible individ-
ual from various settings in order to reduce transmission 
risks in a region. The ARtris estimated by taking the 
combined probability of the infection risk (IR) in a popu-
lation and the secondary attack rate (SAR) observed in 
a situation. The combined probability is needed to esti-
mate the ARtrbecause SARs are the transmission risks 
amongst infected individuals, not the population and a 
person must be infected first before they can transmit 
an agent. This combined probability essentially estimates 
the potential risk that a susceptible host gets infected, 
goes into a given type of setting, and then transmits the 
infection. In other words, the ARtr  is the absolute risk 
of transmission if the susceptible host got infected and if 
that individual also went into a given type of setting.

The ARtris the risk of one transmission event, which 
may include one or more secondary infections. This is 
because the SAR is the proportion of infections amongst 
the contacts of an index case, such that the total number 
of secondary infections depends on the total number of 
contacts. It also concerns one generation of transmission 
caused by the index case related to a specific category 
(such as exposure, setting or symptomaticity status).

The IR is the point-prevalence of infectious cases in the 
general population. It is the estimated risk that a suscep-
tible host is infected. The ARtris the risk on a given day 
(i.e., the day of the IR) because point-prevalence data are 
typically measured over one day. The contact duration for 
many SARs is also often less than one day, especially for 
non-household settings. Time is also incorporated into 
the NNI when one calculates the NNIs over time using 
changing point-prevalence data. An advantage of using 
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point-prevalence data to quantify the infection risk is that 
this number contains two critical pieces of information: 
the number of recovered individuals and the number 
of susceptible individuals. This data is contained within 
the prevalence of infectious cases on a given day because 
point-prevalence is determined by how many individuals 
recovered and how many susceptible individuals remain 
in the population.

The ARtr  is similar to the concept of the force of 
infection (FOI) which is calculated from the prevalence 
of infection over a given time period and an estimate of 
transmissibility. The difference is that the FOI attempts 
to parameterize information about how people inter-
act with each other (e.g., rate of contact). The NNI does 
not attempt to parameterize the complexities of human 
contacts within a given setting (e.g., the average number 
of contacts, how that changes over time, etc.). We have 
opted for a simpler model for two reasons. First, our goal 
is to show how an intuitive population health metric can 
be easily calculated from readily available data (e.g., point 
prevalence of infectious cases, typical SARs in particu-
lar types of settings). Second, while it is laudable to try 
to explicitly model human interactions, this approach to 
modelling the absolute risk of transmission suffers from a 
major problem: human interactions are deeply multi-fac-
torial and dynamic, such that they are almost impossible 
to accurately parameterize. This means there will be sig-
nificant inaccuracies and uncertainties in the calculation 
of the NNI if one were to use the FOI. In our opinion, 
modelling human behaviour of the sort the NNI is con-
cerned with is a form of conjecture which can create the 
illusion of certainty rather than calculating risks based on 
actually measurable data (e.g., point-prevalence of infec-
tious cases, SARs). As a result, the NNI uses a simpler 
model using calculations from actually measurable data.

Now that we have summarized the nuances and con-
siderations regarding the calculation and interpretation 
of the NNI, one can see how the NNI has utility as a pop-
ulation health metric for infectious diseases. First, it is 
scalable as a function of the point-prevalence data which 
are used to estimate the ARtr , whether it be the local 
environment of a care home to larger jurisdictions. Sec-
ond, it is generalizable in that one can estimate the NNI 
for any infectious agent, insofar as there are reliable data 
on the SARs and IRs of the infectious disease.

To demonstrate the properties and utility of the NNI, 
we use severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) as a case example. This is because it is a 
well-characterized disease with reliable data on its SARs. 
Moreover, the simulations of the NNI may be helpful 
for public health officials fighting the pandemic as they 
make isolation decisions. Therefore, the purpose of this 
paper is to formalize the NNI and model the NNI using 
simulated IR data in conjunction with the observed SARs 

of SARS-CoV-2. The NNI was modeled using the SARs 
data from a real-world study [2], across three categories 
including households and community settings, congrega-
tion exposure and symptomaticity status. It is important 
to emphasize that because the NNI is scalable, one can 
theoretically use any type of setting, exposure or status, 
depending on the population and the infectious agent 
one is studying. For example, if one is calculating the NNI 
for a hospital ward using the IR of that ward, the setting 
might be shared rooms vs. common areas. As will be 
demonstrated, all that is required to estimate the NNIs 
for the hospital ward are reliable estimates of the SARs 
for specific categories and the IR.

NNI formalized
For any given transmissible agent, the NNI in a popula-
tion is modeled as follows:

 
NNI = 1

ARR
= 1

AR
= 1

IR × SAR

where the absolute risk reduction of isolation (ARR) is 
estimated by multiplying the IR by the SAR from sus-
ceptible hosts infected with the agent for the specific 
category of interest. The SARs must be multiplied by 
the IR because SARs are the transmission risk posed by 
infected individuals, not the population. Estimating the 
absolute transmission risk in a population requires cal-
culating the combined probability of infection and trans-
mission because a host must be infected first before they 
can transmit an agent. When the IR is 100%, the NNI is a 
mathematical quantity rather than a practical possibility. 
This is because the AR reduces to the SAR when IR = 1, 
but technically everyone in the population would be cur-
rently infectious and thus there would be no one to trans-
mit a virus to.

Case study
With the NNI formalized, we can use SARS-CoV-2 as a 
case example to demonstrate the properties and utility 
of the NNI. The SARs of susceptible hosts infected with 
the wild-type form of SARS-CoV-2 were extracted from 
a retrospective cohort study conducted in Tamil Nadu, 
a southern state of India, in March–May 2020 across 
three categories including setting (households or com-
munity), exposure (congregation or no congregation) and 
symptomaticity status (symptomatic or asymptomatic) 
[2]. Wild-type SARs from that period were used because 
they ensure results of the model are not confounded by 
vaccine immunity. SARS-CoV-2 vaccines were intro-
duced in India in January 2021 [3]. Additionally, data 
from early 2020 provide more reliable estimates of the 
SARs among susceptible hosts because these individuals 
likely had very limited exposure to the virus and no form 
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of immunity. Specifically, Tamil Nadu reported the first 
case of COVID-19 on 18 March 2020 [4]. A property of 
the NNI which makes it similar to R0 is that it assumes 
entirely susceptible index cases and susceptible contacts 
because the SARs were derived from studies when there 
was little-to-no immunity.

To model how the NNIs change as a function of the 
current point-prevalence of infectious cases, values of IR 
were simulated ranging from 0.10 to 100% and the results 
were plotted. To provide a real-world IR data as a refer-
ence point for the simulated data, we report the popula-
tion-weighted seroprevalence of SARS-CoV-2 infection 
in India for the period overlapping with the SARs data 
(measured from May to June 2020), based on a national 
serosurvey data [5]. While seroprevalence data is not 
ideal for estimating infection risk as point prevalence 
data, we used it in this case study because, firstly, point-
prevalence data was lacking and, secondly, in its absence, 
period prevalence provides an overall impression of the 
level of infectious cases during the case study period. As 
such, period prevalence data can be used to estimate IR 

when point-prevalence data is lacking. IR and SARs are 
presented with corresponding 95% confidence intervals 
(CI).

Table  1 displays the wild-type SARs for each of the 
three categories of setting, exposure and symptomaticity, 
as described above.

Figure 1 plots the NNIs for those three categories and 
each of their two sub-categories: household and com-
munity for setting, symptomatic and asymptomatic cases 
for symptomaticity, and congregation and no-congrega-
tion for exposure. The 95% CI of the NNIs are calculated 
using the 95% CI of the SARs.

For comparison, the real-world SARS-CoV-2 IR in 
India for the period overlapping with the SARs data was 
reported as 0.73 (95% CI: 0.34–1.13) [5]. Based on Fig. 1, 
an IR value of 0.73 would yield very large NNIs for all 
three categories. Specifically, even for the sub-categories 
which facilitate transmission (rendered in blue on Fig. 1, 
i.e., household settings, symptomatic cases and congre-
gation exposure), the NNI values would be well above 
1,000. For the sub-categories rendered in red (i.e., com-
munity setting, asymptomatic index cases and no con-
gregation exposure, for which the SARs are lower; see 
Table 1), the IR of 0.76 would correspond to NNI-values 
going into several thousand. This can be thought to rep-
resent a low reduction in transmission from isolation of 
susceptible hosts. One possible benchmark to make the 
interpretation of the NNI more straightforward comes 
from the NNT.

The NNTs of other interventions in medicine can be 
used as working benchmarks to interpret the NNIs, 
because they share the same scale, properties, and have a 
similar conceptual basis. For example, the NNTs of influ-
enza vaccines for preventing infection range from 5 (chil-
dren), 29 (older adults), and 71 (healthy adults) [6]. The 
NNT of the human papillomavirus (HPV) vaccine for 

Table 1 Estimates of the secondary attack rates to model the 
NNI for each category
Category SAR (95% CI)
Setting
Households 13.36 (12.24 to 14.55)
Community 1.3 (1.09 to 1.53)
Symptomaticity
Symptomatic 6.1 (4.33 to 8.3)
Asymptomatic 3.64 (3.33 to 3.98)
Exposure
Congregation 9.71 (8.79 to 10.68)
No congregation 2.19 (1.92 to 2.5)
95% CI = 95% confidence interval. Brackets are the 95% confidence intervals 
(lower limit to upper limit). SAR = secondary attack rate. NNI = number needed 
to isolate. Exact data calculated from Karumanagoundar et al. 2021 [2]

Fig. 1 Modeling the number of susceptible hosts needed to isolate (NNI) depending on specific setting, exposure and symptomaticity. The NNIs were 
calculated using data on SARS-CoV-2 wild-type variant in a southern region of India in early 2020 [2] and are plotted as a function of simulated infection 
risks (0.10–100%)
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preventing any cervical pre-cancer is 60 [7]. The NNTs 
for antihypertensives to prevent 1 death over 5 years 
range from 1157 in healthy young women to 17 in high-
risk older men [8].

As with the NNT, there is a nonlinear relationship 
between the ARR and the NNI such that at low IRs, 
the NNIs are high because the ARtr  are low. As seen 
in Fig.  1, isolation strategies are effective interventions 
for reducing SARS-CoV-2 transmissions from suscep-
tible hosts when the IR rises above 5–10% in a given 
population.

A valuable population health metric
The NNI provides an intuitive population health metric 
which complements R to quantify the impact of isolation 
and to monitor isolation interventions during epidemics 
and pandemics. This is because, while R provides help-
ful information, it does not tell us how many susceptible 
hosts need to be isolated to reduce transmissions in a 
population, whereas the NNI provides this information 
using readily available data on measurable risks. Infection 
risk data at different scales (e.g., hospital wards, munici-
pal districts, jurisdictions) can be used to calculate the 
NNI to quantify the transmission reductions at different 
scales. The NNI can generalize across different infectious 
diseases, insofar as there are reliable data on the SARs 
and IRs of the infectious agent. Given that the NNI can 
be calculated over time using changing point-prevalence 
data, it can be employed as a useful monitoring tool dur-
ing epidemics.

Limitations
The main limitation of this study is that the benchmarks 
for interpreting the NNI have not been fully established. 
Various thresholds for interpreting NNTs have been 
proposed, acknowledging its context-dependency and 
multifactorial nature, but in general even for severe con-
ditions and heavily time-dependent outcomes, it is rare 
that a medical treatment would be recommended if its 
NNTs go into hundreds [9, 10]. While the NNT pro-
vides helpful guidance, the time frames and outcomes 
are not the same. The NNT is primarily concerned with 
within-individual outcomes (e.g., myocardial infarction), 
whereas the NNI for transmission concerns a between-
individual outcome where one or more other individu-
als may be impacted (i.e., transmission event). The NNI 
is also based on the risks over a given day (i.e., the day 
of the point-prevalence of infectious cases), and not, for 
example, months or years which are the risk periods over 
which many NNTs are measured. Point-prevalence is a 
more appropriate metric of the IR than incidence, period 
prevalence, or forecasted risk for four reasons. First, 
the risk of infection depends not just on new infectious 
cases, but existing ones too. Second, while risk over time 

is important, public health officials and communities are 
primarily concerned about the current risk of infection, 
not, for example, the risk over the past 3 months. Third, 
incidence, period prevalence, and forecasted risk depend 
on the time at risk. In general, shorter time windows will 
lower these metrics than longer time windows. If a time 
window is long enough, a cumulative risk can be very 
high even if the risk each day is low. However, there is no 
non-arbitrary way to set the time window to define the 
correct time at risk. Time at risk is not an issue for point-
prevalence because it is a cross-section in time, usually 
over one day. Fourth, forecasting future risks is very diffi-
cult to do accurately because of the multifactorial nature 
and uncertainty in estimating all the relevant variables 
driving viral dynamics, whereas point-prevalence is an 
actually measurable risk. Relatedly, using period preva-
lence over a retrospective time window to predict what 
the IR will be over the next months or years is challeng-
ing since it assumes the future will correspond to the 
past. Therefore, point-prevalence is used to calculate the 
NNI. The advantage is that point-prevalence is a mea-
surable risk (i.e., the current risk). The disadvantage is 
that it does not quantify future risks or risks over larger 
periods of time. Notwithstanding these limitations, the 
NNTs seen in other fields of medicine could provide a 
working benchmark for public health officials in their 
decision-making.

Another limitation with the NNI is that it assumes a 
constant level of transmission because the SAR is a fixed 
parameter. Since the SAR is a fixed parameter in the cal-
culation, one way to look at the NNI is that it is calcu-
lated from an estimate of the overall risk of transmission 
in a given type of setting. Homogeneous transmissi-
bility is obviously not true for infectious diseases such 
as SARS-CoV-2 where there can be “super-spreading” 
events which are transmission events with a high SAR. 
This limitation is mitigated by the fact that one can cal-
culate CIs around the NNI based on the CIs of the SARs. 
This is because, by definition, CIs model the extent of 
variability (heterogeneity). Therefore, the NNI can model 
the variability in transmission, including super-spreading 
events, by calculating the CIs around the NNI using the 
CIs of the SARs, which is what we did in this case study. 
The NNI is thus a very flexible measure that can model 
both the overall transmission risk and the variability in 
transmission risk in order to quantity the impact of isola-
tion measures which focus on isolating non-immune sus-
ceptible hosts to reduce transmission such as immunity 
mandates.

Strengths and future research
These limitations are balanced by strengths of our study, 
including the use of high-quality real-world data fulfilling 
the key theoretical assumptions of model. The NNI itself 
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is underpinned by a fundamental simplicity and transpar-
ency of our model, inspired by a widely-used health met-
ric, which is easy to calculate, reproduce and understand.

Future research should focus on applying the NNI to 
real-world contexts of epidemics and pandemics using 
a range of different pathogens. It would also be helpful 
to have databases of the NNI to assist public health offi-
cials in their decision-making. Furthermore, it would be 
helpful to explore the statistical associations within pop-
ulations between the NNI and R, as well as other popu-
lation health metrics for infectious agents (e.g., hospital/
ICU occupancy, deaths, levels of immunity). Relatedly, 
time trends and predictors of the NNI can be explored 
to link this metric to other constructs. We anticipate that 
as the NNI is studied in different infectious diseases, we 
will learn more about the thresholds for interpreting the 
magnitude of this effect size, much like medicine has 
learned about the NNT as more diseases and treatments 
have been studied. Finally, future work can expand the 
model to include parameters which take into account the 
complexities of human interactions within a setting.

Conclusions
This paper comments on a broad applicability of a new 
population health metric called the number needed to 
isolate (NNI), which we have previously developed in a 
narrower context of estimating the purported benefits 
of immunity mandates [1]. NNI expresses the number of 
susceptible hosts in a population who need to be isolated 
from a category to prevent one transmission event from 
susceptible hosts in that category (e.g. across different 
settings, after a specific exposure or depending on symp-
tomaticity status). Our simulations revealed that the NNI 
has similar properties as the NNT and that the NNT 
could be used as a working benchmark for interpreting 
the NNI. By using the Tamil Nadu SARS-CoV-2 data as 
a case example, we have provided a useful demonstra-
tion of the properties and validity of the NNI, which pro-
vides public health officials with a flexible statistical tool 
because it is scalable and generalizable and which allows 
to efficiently monitor isolation interventions in real-time 
as epidemics and pandemics progress.

Abbreviations
ARR  Absolute Risk Reduction
ATR  Absolute Transmission Risk
CI  Confidence Interval
IR  Infection Risk
NNI  Number Needed to Isolate
NNT  Number Needed to Treat
R  Reproduction Number
R0  Basic Reproduction Number
Rt  Effective Reproduction Number
SAR  Secondary Attack Rate
SARS  Cov 2 Severe Acute Respiratory Syndrome Coronavirus 2

Acknowledgements
We would like to thank Dr. Nathan Bakker and Dr. Mahesh Shenai for their 
valuable feedback on the ideas in this manuscript.

Author contributions
AP, BH, and DS contributed equally to this work. AP, BH, and DS conceived 
the idea. AP and BH performed the formal analysis. AP performed the data 
visualization. AP and BH, wrote the first draft of the manuscript. All authors 
gave critical feedback on the revised report and approved the final version 
of the manuscript. The corresponding author attests all listed authors meet 
authorship criteria and that no others meeting criteria have been omitted.

Funding
BH is supported by the University of Wroclaw within the “Excellence Initiative 
– Research University” framework (grant number 0320/2020/20). The funder 
was not involved in the design of the study and collection, analysis and 
interpretation of data and in writing of the manuscript. AP and DLS declare no 
additional funding.

Data availability
The datasets supporting this analysis are available in the GitHub repository 
at https:/ /github .com/Th eNNI forViralTransmission/SARS-CoV-2. All methods 
were carried out in accordance with relevant guidelines and regulations.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 1 February 2023 / Accepted: 12 December 2024

References
1. Prosser A, Helfer B, Streiner D. Estimating the risk reduction of isolation on 

COVID-19 non-household transmission and severe/critical illness in non-
immune individuals: September to November 2021. J Eval Clin Pract. 2023;in 
press.

2. Karumanagoundar K, Raju M, Ponnaiah M, Kaur P, Rubeshkumar P, Sakthivel 
M, et al. Secondary attack rate of COVID-19 among contacts and risk factors, 
Tamil Nadu, March–May 2020: a retrospective cohort study. BMJ open. 
2021;11(11):e051491.

3. Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee S-S. 
Asian-Origin Approved COVID-19 Vaccines and Current Status of COVID-19 
Vaccination Program in Asia: A Critical Analysis. Vaccines. 2021;9(6):600.

4. State Control Room DoPHaPMHaFWD, Government of Tamil Nadu. Available 
from:  h t t  p s : /  / s t  o p  c o r  o n a .  t n .  g o  v . i n / w p - c o n t e n t / u p l o a d s / fi  l e s / M e d i a B u l l e t i n 1 
8 0 3 2 0 C O V I D 1 9 . p d f     .   

5. Murhekar MV, Bhatnagar T, Selvaraju S, Rade K, Saravanakumar V, Vivian Than-
garaj JW, et al. Prevalence of SARS-CoV-2 infection in India: Findings from the 
national serosurvey, May-June 2020. Indian J Med Res. 2020;152(1–2):48–60.

6. Liang S. Vaccines for Preventing Influenza in Healthy Individuals 2018 [  h t t  p s : /  
/ w w  w .  t h e  n n t .  c o m  / n  n t / v a c c i n e s - p r e v e n t i n g - i n fl  u e n z a - h e a l t h y - i n d i v i d u a l s /       

7. Li JJ, Stetz J. HPV vaccines for prevention of cervical pre-cancer in adolescent 
girls and women 2018 [Available from:  h t t  p s : /  / w w  w .  t h e  n n t .  c o m  / n  n t /  h p v -  v a c  
c i  n e s - p r e v e n t i o n - c e r v i c a l - p r e - c a n c e r - a d o l e s c e n t - g i r l s - w o m e n /       

8. Gueyffier F, Boutitie F, Boissel J-P, Pocock S, Coope J, Cutler J, et al. Effect of 
antihypertensive drug treatment on cardiovascular outcomes in women and 
men: a meta-analysis of individual patient data from randomized, controlled 
trials. Ann Intern Med. 1997;126(10):761–7.

9. Sinclair JC, Cook RJ, Guyatt GH, Pauker SG, Cook DJ. When should an effective 
treatment be used? Derivation of the threshold number needed to treat and 
the minimum event rate for treatment. J Clin Epidemiol. 2001;54(3):253–62.

https://github.com/TheNNIforViralTransmission/SARS-CoV-2
https://stopcorona.tn.gov.in/wp-content/uploads/files/MediaBulletin180320COVID19.pdf
https://stopcorona.tn.gov.in/wp-content/uploads/files/MediaBulletin180320COVID19.pdf
https://www.thennt.com/nnt/vaccines-preventing-influenza-healthy-individuals/
https://www.thennt.com/nnt/vaccines-preventing-influenza-healthy-individuals/
https://www.thennt.com/nnt/hpv-vaccines-prevention-cervical-pre-cancer-adolescent-girls-women/
https://www.thennt.com/nnt/hpv-vaccines-prevention-cervical-pre-cancer-adolescent-girls-women/


Page 7 of 7Prosser et al. Population Health Metrics           (2024) 22:39 

10. Nguyen C, Naunton M, Thomas J, Todd L, McEwen J, Bushell M. Availability 
and use of number needed to treat (NNT) based decision aids for pharma-
ceutical interventions. Exploratory Res Clin Social Pharm. 2021;2:100039.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Number needed to isolate - a new population health metric to quantify transmission reductions from isolation interventions for infectious diseases
	Abstract
	Background
	The number needed to isolate (NNI)
	NNI formalized
	Case study
	A valuable population health metric
	Limitations
	Strengths and future research

	Conclusions
	References


