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Abstract 

Background The multiple imputation by chained equations (MICE) is a widely used approach for handling missing 
data. However, its robustness, especially for high missing proportions in health indicators, is under-researched. The 
study aimed to provide a preliminary guideline for the choice of the extent of missing proportion to impute longitudi-
nal health-related data using the MICE method.

Methods The study obtained complete data on five mortality-related health indicators of 100 countries (2015–2019) 
from the Global Health Observatory. Nine incomplete datasets with missing rates from 10 to 90% were generated 
and imputed using MICE. The robustness of MICE was assessed through three approaches: comparison of means 
using the Repeated Measures- Analysis of variance, estimation of evaluation metrics (Root mean square error, mean 
absolute deviation, Bias, and proportionate variance), and visual inspection of box plots of imputed and non-imputed 
data.

Results The Repeated Measures- Analysis of variance revealed significant differences between complete 
and imputed data, primarily in imputed data with over 50% missing proportions. Evaluation metrics exhibited ‘high 
performance’ for the dataset with a 50% missing proportion for various health indicators However, with missing 
proportions exceeding 70%, the majority of indicators demonstrated a ‘low’ performance level in terms of most evalu-
ation metrics. The visual inspection of the box plot revealed severe variance shrinkage in imputed datasets with miss-
ing proportions beyond 70%, corroborating the findings from the evaluation metrics.

Conclusion It demonstrates high robustness up to 50% missing values, with marginal deviations from complete 
datasets. Caution is warranted for missing proportions between 50 and 70%, as moderate alterations are observed. 
Proportions beyond 70% lead to significant variance shrinkage and compromised data reliability, emphasizing 
the importance of acknowledging imputation limitations for practical decision-making.
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Introduction
International organizations such as the World Health 
Organization (WHO) [1], United Nations Children’s 
Fund (UNICEF) [2], and United Nations Program on 
HIV/AIDS (UNAIDS) [3] make available a vast amount 
of country-specific data on the enormous number of 
health indicators. For instance, The WHO’s Global 
Health Observatory (GHO) provides access to health-
related statistical data for 198 WHO member countries 
[1]. These data are often in the form of time-series data 
in order to monitor and track changes in the health sta-
tus of countries. The global research community are uti-
lizing these population health data across the country to 
undertake various analytical studies, such as interrupted 
and uninterrupted time-series analysis, geostatistical 
analyses, pre-post comparison, longitudinal analyses, 
and cross-sectional analyses [4]. Exploration of these 
population health data is crucial for efficient policy for-
mulation and resource allocation. However, despite these 
databases providing a rich source of health-related infor-
mation across different time points, researchers face 
challenges utilizing these country-specific population 
health data for research purposes mainly due to the issue 
of missing information [5]. Often longitudinal studies in 
health research encounter problems of missing informa-
tion resulting in biasedness and less reliable estimates.

The missingness of population health data occurs due 
to multifaceted reasons. National health information 
systems across various countries often fail to produce 
reliable and complete data due to issues in population 
coverage, representativeness, frequency, timeliness, and 
disaggregation [6]. Missingness in national health data-
sets is exacerbated by poorly integrated data sources, lack 
of data-sharing standards, and inadequate skills among 
personnel handling data [7]. Resource limitations and 
political factors, including poor governance and insta-
bility, hinder the collection and reporting of accurate 
health data in many Low and Middle Income Countries 
(LMICs), leading to incomplete and unreliable datasets 
[8–10]. Additionally, inadequate local capacity, reliance 
on external funding, and poorly developed health infor-
mation systems are also bringing challenges to national 
health data availability in LMICs [11]. Due to these limi-
tations in data availability, global health reporting relies 
heavily on statistical estimates including imputations to 
make these data suitable for summarizing health trends 
and enabling cross-country comparisons [6].

There are several strategies available to handle missing 
values in health-related data. Methods such as Complete 
Case Analysis (CCA) and Single Imputation (SI) methods 
which include mean or median imputation, exclusion and 
interpolation, and regression-based single imputation are 
relatively easier to implement [12, 13]. However, these 

do not account for uncertainty in imputed data [14]. 
Multiple imputation techniques such as Iterative Robust 
Model-based Imputation (IRMI), AMELIA algorithm 
based on the expectation–maximization with a boot-
strapping (EMB), sequential imputation (IMPSEQ), and 
Multivariate Imputation by Chained Equation (MICE) 
are also popular methods used for addressing the miss-
ing values particular to the situations in the health data 
analysis [15]. Recently machine learning imputation 
techniques such as missForest (A random forest-based 
method) and k Nearest Neighbor (k-NN), and seasonal 
decomposition methods to handle missing values in 
time series data are also in use for handling missing val-
ues in health research [16]. Multiple imputation has sev-
eral advantages over other methods, as it duly accounts 
for uncertainty in imputed data and has flexibility with 
regard to underlying assumptions [14]. Multiple Imputa-
tion methods can handle missing values in data which are 
based on the assumption that data are Missing At Ran-
dom (MAR) [17].

The international databases collect national health data 
from countries through household surveys, civil regis-
tration systems, health facility data, topic-specific sur-
veys, and statistical reports. In this context, Missing at 
Random (MAR) and Missing Not at Random (MNAR) 
are likely to occur in the national health data. MNAR 
occurs when missingness is related to the unobserved 
value itself,  such as intermittent scheduling of national 
surveys, data-sharing policy restrictions and irrelevance 
in the context of individual countries [18] prevent in data 
collection or reporting. MCAR is less common in health 
reporting but may occur when data are randomly unre-
ported without any underlying pattern. In national health 
datasets, MCAR may be seen if an observatory fails to 
update data for certain countries or indicators despite 
the availability of the data, as this missingness is unre-
lated to specific data characteristics. Possibly, we can 
assume that many of these missing values are related to 
other observed values. Therefore, missing data are com-
monly assumed to be missing at random rather than the 
other two missing mechanisms namely Missing Com-
pletely At Random (MCAR) and Missing not at random 
(MNAR) [19]. Missing data mechanisms indeed exist on 
a continuum between MAR and MNAR, and rather than 
aiming for pure categories, it’s more practical to evaluate 
whether or not any assumption violations impact results 
meaningfully [20]. Further, the inclusion of variables 
that likely predict the missing information (Auxiliary 
variables) in the imputation model increases the likeli-
hood of the MAR assumption being met [21]. The MICE 
also known as Fully Conditional Specification (FCS) is a 
widely used reliable multiple imputation method in han-
dling missing values [22]. Previous studies have shown 
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that the multiple imputation methods including the 
MICE method provide unbiased estimates for a higher 
proportion of missing data even up to 90% missingness 
[16, 23, 24]. However, there is scant literature available on 
the robustness of the MICE method for handling health 
data like mortality indicators especially when there are 
missing proportions in varying amounts (as high as 90% 
missing).

The present study aimed to provide a preliminary 
guideline for the choice of the extent of missing pro-
portion to impute with the MICE procedure. The study 
further examines the robustness of the MICE method 
in imputing the longitudinal health datasets with miss-
ing rates ranging from 10 to 90%. To accomplish this, 
the study used complete data on mortality-related health 
indicators including Adolescent Mortality Rate (AMR), 
Under-five Mortality Rate (UMR), Infant Mortality Rate 
(IMR), Neonatal Mortality Rate (NMR) and Stillbirth 
Rate (SBR). We chose these indicators as a representa-
tive of the national health data due to the completeness 
of the data as they are the prime measures of health 
outcomes and availability of the complete data. We gen-
erated random missing values of varying proportions 
(10–90%) in the complete data and then imputed them 
using the MICE method to assess its performance in han-
dling missing values of different proportions. The pre-
sent study is a substantial groundwork and a crucial step 
towards overcoming the challenges of handling missing 
data information faced by the research community while 
utilizing longitudinal databases of international organi-
zations like WHO, UNICEF and alike. This can lead to 
better decision-making and resource allocation in health 
policy and planning.

Methodology
Data and data source
The study utilized complete data on mortality-related 
health indicators namely Adolescent Mortality Rate 
(AMR), Under-five Mortality Rate (UMR), Infant Mor-
tality Rate (IMR), Neonatal Mortality Rate (NMR) and 
Stillbirth Rate (SBR). These indicators were prioritized 
and standardized within the category of ‘Mortality by 
age’, as outlined in the Global Reference List (GRL) of 
core health indicators by the World Health Organization 
(WHO) [25]. Data on these health indicators for selected 
100 countries between the period 2015–2019 were 
extracted from the Global Health Observatory (GHO) 
database (https:// www. who. int/ data/ gho), an interface by 
the WHO showing health-related metrics which is freely 
available in the public domain [1]. The countries were 
selected purposively from a list of 189 countries in the 
United Nations Development Program (UNDP) Human 
Development Index (HDI) Report 2019 [26]. Specifically, 

25 countries were chosen from each of the four catego-
ries based on their HDI values: very high, high, medium, 
and low HDI levels. Furthermore, the selection of indica-
tors was contingent upon the availability of the complete 
data for the selected 100 countries over the study period 
(2015–2019). Consequently, the indicator of Adult Mor-
tality Rate listed under the ‘Mortality by age’ category in 
the GRL with missing values for the selected 100 coun-
tries were excluded. The operational definitions for mor-
tality related health indicators utilized in the study can 
be found additional file [see Additional file 1]. The health 
indicator data were organized in a long format to align 
with the longitudinal nature of the data, wherein each 
country would have multiple records based on the ‘time’ 
variable [27].

Study procedure
The present study aimed to assess the robustness of the 
MICE method for handling longitudinal health datasets 
with differing missing rates ranging from 10 to 90%. The 
complete data organized in a long format were utilized 
for the amputation procedure. We followed a stepwise 
univariate amputation procedure [28] to generate miss-
ing values in the complete dataset. In which, the missing 
values were randomly generated using RAND function in 
Microsoft Excel 2019 one variable at a time and the pro-
cedure was repeated for all the mortality-related health 
indicator variables. Since missingness in one variable is 
independent of the missing value itself and observed 
values, we classify this missing mechanism as Missing 
Completely At Random (MCAR). For instance, to get a 
10% incomplete dataset from the complete dataset, we 
generated 10% missing values randomly in each variable 
(AMR, UMR, IMR, NMR and SBR in the present study) 
one at a time. Since we randomly generated missing 
values one variable at a time, it is likely to follow mixed 
missing patterns where missingness occurs in combina-
tion of intermittent, and monotone patterns [29]. The 
study generated nine incomplete datasets of varying pro-
portions of missing values ranging between 10 and 90% 
(that is, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% 
missing data) from the complete dataset. The amputa-
tion process was implemented using Microsoft Excel, 
2019. The variable details of complete and generated nine 
incomplete datasets of varying missing rates have been 
summarized in Additional file 2 [see Additional file 2].

Thereafter, we included auxiliary variables (those vari-
ables which are not in the substantive interest but are 
suspected to contain the information about the missing 
information in the variables of interest (here, mortality-
related health indicators) [20]) to the imputation model 
of MICE. We carefully selected auxiliary variables that 
have complete data or with only minimal missingness. 

https://www.who.int/data/gho
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Auxiliary variables are included in the imputation model 
to improve prediction quality by capturing relationships 
that help explain missingness [20, 30, 31]. When these 
auxiliary variables have missing values, their ability to 
predict values of primary variables diminishes, leading to 
less accurate and biased imputations due to insufficient 
information. The details of auxiliary variables used for 
the study are summarized in an additional file [see Addi-
tional file 3]. Subsequently, the nine incomplete datasets 
were imputed using the MICE method to generate nine 
complete imputed datasets using the ‘mice’ package in R 
version 4.2.0 [32]. The study utilized the Predictive Mean 
Matching (PMM) tool of MICE to generate imputed 
values that follow the distribution pattern as that of the 
available information [33]. For the austerity of the impu-
tation method, we used the standard MICE to impute 
missing values. Since we included a cross-sectional ele-
ment variable (‘country’ in the present study), time ele-
ment variable (‘year’ in the present study) along with 
auxiliary variables and used ‘Predictive Mean Matching 
(PMM)’ tool to predict the missing values in the imputa-
tion model, the standard MICE expected to address the 
missingness in the longitudinal structure of the data. Pre-
vious literature has recognized this flexibility of standard 
MICE as an effective imputation method for longitudinal 
data although it is not particularly a longitudinal impu-
tation method [34, 35]. Another important parameter in 
the MICE imputation model is the number of imputa-
tions (m), has been kept as five (m = 5). For instance, after 
applying the MICE method for a dataset with 10% miss-
ingness, it would generate a total of 5 different imputed 
complete datasets. The choice of a fixed minimum num-
ber of imputations (m = 5) was made to align with the 
default setting in the ‘mice’ package [32]. Additionally, 
five imputations are often cited as sufficient for moderate 
levels of missingness [20, 36, 37]. However, we compared 
evaluation metrics of the 90% imputed data using five 
imputations (m = 5) versus twenty imputations (m = 20) 
and observed a minimal deviation [see Additional file 6]. 
Further statistical testing on these multiple imputed 
dataset would give 5 different estimations to account for 
the uncertainty, therefore taking an average of these dif-
ferent estimates would provide an unbiased estimate for 
the missing value [22]. Since the present study was not 
intended to conduct statistical testing or uncertainty 
analysis on the imputed datasets to derive statistical 
inferences, we used the averaging method across multiple 
imputed datasets to obtain a single pooled dataset. This 
approach was chosen as a practical solution, consider-
ing the computational intensity required to compare the 
robustness of complete imputed datasets across different 
levels of missingness. Eventually, the study yielded a total 
of 10 datasets: one complete dataset and nine imputed 

datasets with different missing criteria ranging from 10 
to 90%. The study then assessed the robustness of the 
MICE method by comparing the imputed datasets with 
the dataset comprising true known values. The details of 
the study procedure are delineated in Fig. 1.

Robustness assessments of the MICE method in imputing 
missing values
We assessed the robustness of the MICE method in 
imputing varying proportions of missing values using 
two approaches.

Approach I: Repeated Measures Analysis of Variance 
(RM ANOVA)

We employed RM-ANOVA to assess whether there is 
any significant difference between the health indicator 
data of complete and imputed datasets [38]. The variance 
could be biased due to imputation, potentially violating 
RM-ANOVA assumptions; therefore, we used the Green-
house–Geisser correction when reporting RM-ANOVA 
results. Ideally, we expect the acceptance of the null 
hypothesis that there is no significant difference between 
complete and imputed datasets. However, in the event of 
a significant difference, we reported Bonferroni adjusted 
multiple comparison findings to specifically determine 
which imputed dataset, out of the nine datasets with 
varying proportions of missing data (ranging from 10 to 
90%), exhibited a significant difference from the actual 
dataset with 0% missingness [39].

Approach II: Evaluation metrics
Further, the study estimated evaluation metrics such 

as Root Mean Square Error (RMSE), Mean Absolute 
Deviation (MAD), Bias and Proportionate Variance (PV) 
to examine the robustness of the MICE procedure by 
assessing and comparing the deviation of imputed data 
of different missing rates and complete data of mortal-
ity related health indicators. We estimated the following 
evaluation metrics:

Root mean square error (RMSE)
The study calculated Root Mean Squared Error (RMSE) 
for all imputed datasets with different missing rates rang-
ing from 10 to 90% using the following equation [16].

where, ximputed is the imputed value, xcomplete is the actual 
value corresponding to the imputed value and n is the 
number of cases imputed. The RMSE estimate the differ-
ence between the true/complete value and the imputed 
value, and it is considered as a measure of the bias. The 
smaller RMSE indicates less bias and more consistency 
after imputation. Hence, the RMSE value close to zero is 

RMSE =

√

∑
(

ximputed − xcomplete

)2

n
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desirable. Additionally, we estimated the relative RMSE 
value by dividing the RMSE of the imputed data by the 
standard deviation of the complete/true dataset. The 
details are given in the Additional file 5 [see Additional 
file 5].

Mean absolute deviation (MAD)
It is an evaluation metric which estimates the average of 
the absolute difference between the imputed value and 
complete value of mortality-related indicators. It is one 
of the measures to know dispersion in the imputed data 

Fig. 1 Study flow chart
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from the complete data given by the following formula 
[40].

The smaller MAD indicates less bias and more consist-
ency after imputation, hence, a value closer to zero is the 
desirable value.

Bias
It is an evaluation metric which estimates the mean devi-
ation between the imputed value and the complete value 
of mortality-related indicators. The bias is estimated 
using the following formula [16].

A value of zero indicates no bias. A positive bias indi-
cates the overestimation of the complete data and a nega-
tive value indicates the underestimation of the complete 
data by the imputed values.

Proportionate variance (PV)
A proportionate variance is the ratio of the variance of 
the imputed values to the variance of the corresponding 
complete data. The PV values help to assess the extent of 
the imputed value and capture the variance of the com-
plete data. The PV is calculated using the following equa-
tion [40]:

The PV value of 1 implies that the variance of the 
imputed and complete data is equal. The PV value closer 
to 1 is desirable.

The estimated evaluation metrics were categorized 
as ‘high performance’, ‘medium performance’ and ‘Low/
cautionary performance’ for each health indicator. The 
categorization was based on the observed range for each 
evaluation metric divided into equal parts, aiming to cre-
ate distinct categories based on the observed spread in 
the data. The details of the categorization of evaluation 
metrics for each health indicator have been described in 
the additional file [see Additional file  4]. We examined 
the robustness of the imputed datasets of all the indica-
tors from the complete data by assessing the performance 
in each evaluation metric.

Approach III: Visual inspection of the box plots
It is crucial to scrutinize other key statistical estimates 

such as interquartile range, maximum and minimum val-
ues, and the presence of outliers across the complete and 
imputed datasets. This comprehensive evaluation allows 

MAD =

∑
∣

∣ximputed − xcomplete

∣

∣

n

BIAS =

∑

(ximputed − xcomplete)

n

PV =

variance(ximputed)

variance(xcomplete)

us to assess the imputation’s efficacy in capturing not 
only the mean but also the variability present in the origi-
nal data. To facilitate this analysis, we utilized box plots 
to visually compare the distributions of health indicators 
between the complete and imputed datasets [16].

Result
Table  1 details the test of RM-ANOVA of various indi-
cators of complete and imputed datasets. The mean and 
standard deviation of each mortality-related health indi-
cators of selected 100 countries over the period 2015–
2019 of both complete and imputed datasets of different 
missing criteria (10–90%) were reported. Additionally, 
we have reported the mean difference of indicators of 
imputed datasets from the complete dataset. The RM-
ANOVA evaluated the null hypothesis that there is no 
significant difference between mortality-related health 
indicators of the complete and imputed datasets. Mauch-
ly’s Test of Sphericity indicated that the assumption of 
sphericity had been violated, for all the indicators under 
study including AMR (χ2 = 10,160.808,  p < 0.001), UMR 
(χ2 = 9940.261,  p < 0.001), IMR (χ2 = 9723.733,  p < 0.001), 
NMR (χ2 = 10,364.271,  p < 0.001), and SBR 
(χ2 = 12,384.048,  p < 0.001). Therefore, a Greenhouse–
Geisser correction was used to report RM-ANOVA. 
The RM-ANOVA, with Greenhouse–Geisser correc-
tion, revealed statistically significant differences in 
the mean values of AMR (F(2.059, 1027.546) = 4.864, 
p = 0.007), UMR (F(2.531, 1263.192) = 19.551, p < 0.001), 
IMR (F(3.141, 1567.604) = 6.818, p < 0.001), NMR 
(F(2.248, 1121.978) = 3.577, p = 0.024), and SBR (F(2.485, 
1239.783) = 3.459, p = 0.023) between the complete and 
imputed datasets. Since there is a significant difference 
between imputed and complete datasets we conducted 
Bonferroni adjusted multiple comparison analysis [39]. 
Table 1 provides a detailed pairwise comparison of each 
indicator between the complete and imputed datasets. 
A statistically significant difference was experienced for 
80%, 90%, 60% and 70% imputed data of AMR (mean 
difference of 6.419 deaths per 100,000 adolescent popu-
lation), UMR (mean difference of 7.424 deaths per 1000 
live births), IMR (mean difference of 2.095 deaths per 
1000 live births) and SBR (mean difference of 0.745 still-
births per 1000 total births) indicators in comparison to 
the dataset without imputation. However, NMR did not 
show a statistically significant difference between the 
non-imputed and imputed datasets with varying missing 
criteria.

The evaluation metrics such as Root Mean Square 
Error (RMSE), Mean Absolute Deviation (MAD), Bias 
and Proportionate Variance (PV) were used to assess the 
extent of deviation of the imputed datasets (with miss-
ing criteria ranging from 10 to 90%) from the complete 
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Table 1 Details of the test of RM-ANOVA and post-hoc analysis of mortality-related health indicators of 10–90% imputed and 
complete datasets

Imputed datasets with missing criteria Mean ± SD Range Mean difference 
from complete data

95% CI p value

Lower limit Upper limit

Adolescent mortality rate (AMR)
Mauchly’s test:
Chi-square (χ2): 10,160.808, p value: < 0.001

RM-ANOVA:
F (dfgroup, dferror):
bF (2.059, 1027.546) = 4.864, p value = 0.007

0% 89.02 ± 72.12 10.61–304.13

10% 89.05 ± 72.01 10.61–304.13 − 0.025 − 0.22 0.17 1

20% 89.08 ± 72.15 10.61–297.19 − 0.056 − 0.324 0.212 1

30% 89.95 ± 71.84 10.61–297.19 − 0.922 − 2.002 0.157 0.238

40% 88.48 ± 71.86 10.61–297.19 0.543 − 0.189 1.275 0.69

50% 86.97 ± 70.43 12.12–297.19 2.056 − 0.07 4.183 0.073

60% 88.14 ± 71.71 10.61–297.19 0.886 − 0.654 2.426 1

70% 88.14 ± 63.9 11.64–286.47 0.887 − 4.011 5.785 1

80% 95.17 ± 59.7 12.12–291.87 − 6.149 − 12.139 − 0.158 0.037a

90% 84.68 ± 20.69 12.51–286.47 4.341 − 5.791 14.473 1

Under-five mortality rate (UMR)
Mauchly’s test:
Chi-square (χ2): 9940.261, p value: < 0.001

RM-ANOVA:
F (dfgroup, dferror):
bF (2.531, 1263.192) = 19.551, p < 0.007

0% 35.29 ± 32.29 2–140.19

10% 35.31 ± 32.29 2–140.19 − 0.015 − 0.085 0.055 1

20% 35.35 ± 32.38 2–140.19 − 0.059 − 0.211 0.093 1

30% 35.31 ± 32.41 2–140.19 − 0.018 − 0.215 0.179 1

40% 35.39 ± 31.96 2–124.92 − 0.101 − 0.506 0.303 1

50% 34.68 ± 31.75 2–128.68 0.614 − 0.206 1.434 0.646

60% 34.06 ± 29.89 2.07–124.92 1.229 − 0.505 2.963 0.923

70% 34.31 ± 29.23 2–140.19 0.986 − 1.14 3.111 1

80% 33.3 ± 26.03 2.21–124.92 1.994 − 0.899 4.887 1

90% 27.87 ± 16.35 2.44–106.62 7.424 3.406 11.442  < 0.001a

Infant mortality rate (IMR)
Mauchly’s test:
Chi-square (χ2): 9723.733, p value: < 0.001

RM-ANOVA:
F (dfgroup, dferror):
bF (3.141, 1567.604) = 6.818, p < 0.001

0% 26.21 ± 21.93 1.59–95.12

10% 26.21 ± 21.92 1.59–95.12 0 − 0.056 0.055 1

20% 26.22 ± 21.89 1.59–95.12 − 0.005 − 0.103 0.094 1

30% 26.19 ± 21.91 1.59–89.73 0.016 − 0.072 0.105 1

40% 26.39 ± 21.77 1.65–89.73 − 0.175 − 0.506 0.155 1

50% 26.32 ± 21.69 1.59–89.73 − 0.108 − 0.648 0.432 1

60% 24.12 ± 19.37 1.7–87.25 2.095 0.611 3.579  < 0.001a

70% 25.97 ± 19.5 1.82–85.63 0.245 − 1.216 1.706 1

80% 24.55 ± 17.21 1.76–87.93 1.665 − 0.331 3.66 0.29

90% 27.23 ± 14.09 2.06–87.25 − 1.023 − 3.497 1.451 1

Neonatal mortality rate (NMR)
Mauchly’s test:
Chi-square (χ2): 10,364.271, p value: < 0.001

RM-ANOVA:
F (dfgroup, dferror):
bF (2.248, 1121.978) = 3.577, p = 0.024

0% 15.56 ± 11.7 0.85–45.25

10% 15.55 ± 11.71 0.85–45.25 0.01 − 0.009 0.029 1

20% 15.56 ± 11.72 0.85–45.25 0 − 0.032 0.031 1
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dataset (non-imputed) of mortality related health indica-
tors has been presented in Table 2 and Fig. 2. The high-
est RMSE values (RMSE value of AMR- 72.9; UMR- 29.9; 
IMR- 17.8; NMR- 11.7; and SBR- 7.4) were observed for 
90% imputed data for all the health indicators (Table  2 
and Fig. 2A). Likewise, at lower missing data levels (10–
30%), relative RMSE values remain low, but as missing 
data exceeds 50%, the Relative RMSE increases, indicat-
ing greater deviation of imputed values from the original 
data’s variability (see Additional file  5). A similar trend 
was observed for MAD that, the highest values (MAD 
values of AMR- 58.7; UMR- 20.2; IMR- 13.3; NMR- 
10.1, and SBR- 5.2) were observed for 90% imputed data 
(Table 2 and Fig. 2B). Moreover, the RMSE and MAD val-
ues for SBR were below 10 units across all imputed data-
sets, whereas for NMR, these values remained below 10 
units up to the 80% imputed dataset. The MAD values 
were below 10 units for AMR, UMR and IMR up to 60%, 
70% and 80% imputed datasets respectively.

For the UMR, IMR, NMR, and SBR indicators, the 
highest bias values were 8.3 (90% imputed data), 3.5 (60% 
imputed data), 1.2 (80% imputed data), and 1.1 (70% 
imputed data), respectively, all of which were observed 
to underestimate the corresponding complete values. 

In contrast, the highest bias value for the AMR indica-
tor was 7.7 with 80% imputed data, which overestimated 
the complete values. The majority of mortality-related 
indicators of various imputed datasets exhibited negative 
bias values, suggesting an underestimation of the com-
plete data by the imputed data (Table 2 and Fig. 2C). As 
the proportion of missing data increased, the deviation in 
PV values from the ideal score of 1 also showed a rising 
trend (Table 2 and Fig. 2D). The highest deviation from 
the ideal value was observed with 90% imputed data for 
all indicators. Overall, the evaluation metrics indicated a 
decrease in robustness as the proportion of missing data 
increased.

Figure  3 depicts the performance level of the MICE 
method based on each evaluation metric for each health 
indicator of nine imputed datasets. The evaluation met-
rics predominantly exhibited ‘high performance’ up 
to the dataset with a 50% missing proportion for vari-
ous health indicators. Further, for the datasets with the 
imputation of 60–70% missing proportion, most evalua-
tion metrics of different indicators showed a mix of ‘high’ 
and ‘medium’ performance levels; although a few evalu-
ation metrics showed ‘low performance’ levels as well. 
However, with missing proportions exceeding 70%, the 

Table 1 (continued)

Imputed datasets with missing criteria Mean ± SD Range Mean difference 
from complete data

95% CI p value

Lower limit Upper limit

30% 15.55 ± 11.71 0.86–45.25 0.008 − 0.058 0.074 1

40% 15.27 ± 11.47 0.85–45.25 0.287 − 0.065 0.639 0.344

50% 15.3 ± 11.26 0.87–45.09 0.264 − 0.201 0.728 1

60% 15.09 ± 11.37 0.85–45.25 0.468 − 0.001 0.937 0.051

70% 15.94 ± 11.07 0.87–45.09 − 0.382 − 0.995 0.23 1

80% 14.57 ± 8.93 0.99–40.46 0.994 − 0.124 2.112 0.167

90% 15.05 ± 4.24 0.85–45.07 0.513 − 1.117 2.142 1

Stillbirth rate (SBR)
Mauchly’s test:
Chi-square (χ2): 12,384.048, p value: < 0.001

RM-ANOVA:
F (dfgroup, dferror):
bF (2.485, 1239.783) = 3.459, p = 0.023

0% 12.7 ± 8.68 1.52–34.5

10% 12.7 ± 8.68 1.52–34.5 0.002 − 0.015 0.019 1

20% 12.69 ± 8.67 1.56–34.5 0.003 − 0.016 0.023 1

30% 12.68 ± 8.66 1.52–34.5 0.014 − 0.013 0.042 1

40% 12.69 ± 8.68 1.52–34.5 0.007 − 0.036 0.051 1

50% 12.83 ± 8.63 1.71–34.5 − 0.131 − 0.294 0.031 0.376

60% 12.48 ± 8.22 1.52–32.7 0.214 − 0.209 0.637 1

70% 11.95 ± 7.57 1.56–31.47 0.745 0.106 1.384 0.007a

80% 12.78 ± 7.1 1.7–34.5 − 0.08 − 0.828 0.668 1

90% 12.51 ± 5.24 1.79–31.47 0.132 − 0.828 0.668 1
a Significance level at 0.05
b Greenhouse- Geisser corrected F-statistic
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majority of indicators demonstrated a ‘low’ performance 
level in terms of most evaluation metrics.

Figure  4, delineates the box plot for each mortality-
related indicator and contains a plot for both complete 

and imputed data. The visual inspection of the box 
plots suggests that till a missing proportion of 50%, the 
imputed data is slightly changing from the complete data. 
Whereas, the imputed data for the missing proportion of 

Table 2 Evaluation metrics of imputed data with varying missing proportions of various health indicators in comparison with 
complete data

a High performance; bmedium performance; clow/cautionary performance

The categorization details of the performance levels of evaluation metrics are presented in an additional file [see Additional file 4]

Imputed datasets with 
missing criteria

Adolescent mortality 
rate

Under-five mortality 
rate

Infant mortality rate Neonatal mortality 
rate

Stillbirth rate

Root Mean Square Error—RMSE (RMSE value close to zero is desirable)

 10% 4.205a 1.509a 1.201a 0.406a 0.366a

 20% 4.082a 2.323a 1.500a 0.485a 0.300a

 30% 13.531a 2.453a 1.099a 0.819a 0.346a

 40% 7.930a 4.361a 3.574a 3.817a 0.466a

 50% 20.691a 7.944a 5.204a 4.489b 1.577a

 60% 13.587a 15.328b 13.324c 4.165b 3.728b

 70% 39.886b 17.341b 11.897c 5.007b 5.276c

 80% 46.129b 22.143c 15.310c 8.586c 5.697c

90% 72.885c 29.888c 17.796c 11.712c 7.385c

Mean Absolute Deviation—MAD (MAD value close to zero is desirable)

 10% 2.961a 1.049a 0.785a 0.342a 0.263a

 20% 3.006a 1.538a 1.053a 0.395a 0.228a

 30% 5.768a 1.743a 0.770a 0.507a 0.229a

 40% 4.311a 1.990a 1.326a 1.206a 0.298a

 50% 7.231a 2.653a 2.041a 1.559a 0.499a

 60% 6.755a 6.055a 4.980b 1.638a 1.581a

70% 17.243a 9.157b 5.511b 2.285a 2.526b

 80% 29.143b 12.672b 8.752b 5.033b 3.291b

 90% 58.671c 20.224c 13.267c 10.131c 5.217c

BIAS (BIAS value of zero indicates no bias, a positive value indicates the overestimation and a negative value indicates an underestimation of complete data)

 10% 0.248a 0.149a 0.003a − 0.097a − 0.016a

 20% 0.279a 0.295a 0.023a 0.002a − 0.016a

 30% 3.074b 0.059a − 0.054a − 0.026a − 0.048a

 40% − 1.358a 0.254a 0.439a − 0.719b − 0.018a

 50% − 4.113b − 1.228a 0.216a − 0.527b 0.262a

 60% − 1.476a − 2.048a − 3.492c − 0.780b − 0.357b

 70% − 1.268a − 1.408a − 0.350a 0.546b − 1.065c

 80% 7.686c − 2.493a − 2.081b − 1.242c 0.100a

90% − 4.823b − 8.249c 1.137a − 0.570b − 0.203a

Proportionate Variance—PV (The PV value closer to 1 is desirable)

 10% 0.968a 1.002a 0.992a 1.005a 1.010a

 20% 1.005a 1.056a 0.984a 1.014a 0.995a

 30% 0.984a 1.023a 0.994a 1.003a 0.989a

 40% 0.977a 0.953a 0.965a 0.901a 1.004a

 50% 0.886a 0.928a 0.955a 0.864a 0.978a

 60% 0.981a 0.774a 0.690b 0.912a 0.838a

 70% 0.698a 0.743a 0.710b 0.849a 0.664b

 80% 0.613b 0.565b 0.514c 0.495c 0.590b

 90% 0.002c 0.208c 0.338c 0.018c 0.299c
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Fig. 2 Trends in evaluation metrics of mortality-related health indicators of imputed datasets differing in missing criteria (10–90%)
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60% and 70% shows a moderate change from the com-
plete data and that of imputed data with more than 70% 
missing rates shows substantial changes from the com-
plete data.

Discussion
Despite MICE being recognized as a robust imputation 
method, there remains a lack of guidelines regarding the 
acceptable proportion of missing data that can be effec-
tively imputed using this method without significantly 
compromising data accuracy and reliability. Graham 
(2009) suggested that multiple imputation, including 
MICE, can effectively handle up to 50% of missing data, 
even in datasets with small sample sizes [20]. Conversely, 
Kim & Kim (2020) observed acceptable performance by 
the MICE method for datasets with missing proportions 
of up to 60% in their simulation study [41]. Similarly, 
Kambach et al. (2020) observed in their simulation study 
that MICE can handle missing proportions up to 90% 
with relatively less bias and better accuracy compared to 
other imputation methods [42]. Blazek et al. (2021) also 
noted that multiple imputation can provide unbiased 
estimates of missing values even when the missing pro-
portions are very high with the inclusion of appropriate 
auxiliary variables, which are associated with missing 
data, in the imputation model [23]. Taking cue from lit-
erature, it can be derived that MICE can handle missing 
proportions as high as 90%, however; to what extent the 

performance levels of different MICE imputed datasets 
can be labelled as ‘high’, ‘medium’ and ‘cautionary’ based 
on evaluation metrics?

Against this backdrop, the study aimed to assess the 
robustness of the MICE method in imputing health indi-
cators with varying missing proportions by using four 
different statistical approaches. Specifically, it sought to 
determine the extent to which MICE could effectively 
handle missing values in longitudinal health data. Using 
the first approach, the study compared the means of 
imputed datasets with the complete data of health indi-
cators using the RM-ANOVA procedure. Previous lit-
erature has also used one-way ANOVA and subsequent 
post-hoc tests to compare the performance of different 
methods of imputation [40]. Upon conducting the pair-
wise comparison between each imputed data and cor-
responding complete data, no statistically significant 
difference was observed for any health indicator when 
imputation was performed up to 50% missing propor-
tions. This finding suggests that imputation up to the 
threshold of 50% missing proportion of similar data can 
yield comparable results to the complete data.

The evaluation metrics (second approach) used in 
this study—RMSE, MAD, Bias, and PV—were essential 
for assessing the robustness of imputed datasets across 
varying missing data scenarios, from 10 to 90%. Gener-
ally, the findings revealed a consistent pattern: evaluation 
metrics tended to increase as the proportion of missing 

Fig. 3 Performance levels of different MICE imputed datasets with regard to evaluation metrics
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Fig. 4 Boxplot of the complete and imputed data (10–90% missing proportions) of mortality-related health indicators
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data imputed grew. Additionally, we estimated the rela-
tive RMSE to have a sense of imputation error relative 
to the natural variability. It also shows that, as the miss-
ing proportion increases, the relative RMSE values rise, 
particularly beyond 50%, suggesting higher imputation 
error relative to natural variability at these levels. This 
pattern aligns with observations from past literature, 
which have shown similar trends in the plots between 
evaluation metrics such as crude RMSE and crude BIAS 
and the proportions of missing data [16]. In the present 
study, the bias values for most mortality-related indica-
tors were negative, suggesting an underestimation of 
the complete data by the imputed data. In the Feng et al. 
(2021) study, the bias for the best-performing imputation 
method ranged between − 2.5 to 1 when handling data 
with a missing proportion ranging between 5 and 30% 
[16]. In line with this, the bias value ranged from − 2 to 
1 for all the indicators except the indicator of AMR up 
to 50% missing proportion in the present study (Table 2). 
It became evident from the present study that PV values 
deviated further from the ideal value of 1 as the propor-
tion of imputed missing data increased. A notable devia-
tion in PV values was particularly observed beyond the 
70% missing data criterion, indicating a significant under-
estimation of the variance compared to the complete 
dataset as the proportion of missing values increased 
(Table  2). Similarly, the study identified significant 
shrinkage in the standard deviation particularly beyond 
70% missingness, mirroring the trends observed in PV 
values. It is crucial to interpret pairwise comparison find-
ings between the complete and imputed data alongside 
the visual inspection of evaluation metrics and box plots 
(Figs. 3 and 4). For instance, while the 90% imputed AMR 
indicator did not exhibit a significant difference from the 
complete data upon initial inspection, however; examina-
tion of the evaluation metrics plot (Figs. 2 and 3) and box 
plot (Fig.  4) revealed substantial deviation, particularly 
after reaching a 70% missing proportion. Therefore, to 
accurately represent both the mean and variance of the 
imputed data and the complete data, visual inspection of 
box plots was also resorted to in the present study. The 
examination of evaluation metrics (Fig. 3) and box plots 
(the third approach) (Fig. 4) revealed a decline in robust-
ness as the proportion of missing data increased. In gen-
eral, up to 50% missing data, deviations of imputed data 
with complete data were minimal, while beyond this 
threshold, some indicators showed considerable devia-
tions. Furthermore, as missing proportions surpassed 
70%, most indicators exhibited significant disparities 
between the imputed and complete non-imputed data.

The present study has several strengths to offer. The 
literary evidence [43–45] found MICE to be robust, pro-
viding unbiased estimates with minimal prediction error 

compared to other imputation methods. Nonetheless, 
its effectiveness in imputing data with varying degrees 
of missingness especially in population health metrics, 
such as mortality, fertility, health systems, etc. indicators, 
remains relatively unexplored, the lacunae which have 
been filled by the present study. In this context, it is the 
first of its kind, to the best of the authors’ knowledge, to 
assess the robustness of the MICE method in imputing 
missing data proportions ranging from 10 to 90% and 
comparing these imputations with the complete dataset. 
The study has followed a very detailed exhaustive proce-
dure by using four different statistical approaches to pro-
vide a preliminary guideline for determining the choice of 
the extent of imputing data that can be robustly handled 
by the MICE method. The study has further provided a 
novel categorization to label the performance levels of 
different MICE imputed datasets as ‘high’, ‘medium’ and 
‘cautionary’ based on multiple reliable evaluation met-
rics. The present study thus serves as a reference point 
for overcoming the challenges of handling missing data, 
especially while utilizing longitudinal databases of the 
international organization. This can lead to better deci-
sion-making and resource allocation in health policy and 
planning.

The study had several limitations that should be con-
sidered. First, we generated an equal proportion of miss-
ing values across all indicators, which may not reflect 
real scenarios. Further research is needed to address this 
gap. Second, the study focused solely on population met-
rics related to mortality health indicators. Future stud-
ies should explore the robustness of the MICE method 
in imputing other health indicators. The present study 
aimed to assess, being a widely used multiple imputa-
tion method, how well MICE performs when imputing 
longitudinal national health datasets with varying miss-
ing rates. However, due to the computing intensity, we 
could not compare the performance of various imputa-
tion methods. The study used a simpler stepwise uni-
variate amputation procedure for generating missing 
values under the condition of ‘missing completely at 
random. Therefore, readers should be cautioned while 
drawing inferences from the findings. The present study 
used a fixed minimum number of imputations (m = 5) 
for imputing even for data with a higher proportion of 
missing (e.g.: 60–90%). Five imputations are often cited 
as sufficient for moderate levels of missingness [20, 36, 
37]. Therefore increasing the number of imputations 
when dealing data with a higher proportion of missing-
ness may reduce the imputation error and increase sta-
tistical power [22]. The present study limited its analysis 
by detecting changes in the overall mean to provide a 
general view of the dataset’s performance after imputa-
tion. However, due to the computing intensity, we did not 
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conduct any per-country analysis. In the present study, 
we did not conduct a simulation study, which limits the 
robustness of our evaluation of the MICE imputation 
method. Since there is no de facto approach available, the 
categorization of the evaluation metrics performance in 
the present study has been done by dividing the observed 
range, therefore readers are advised to interpret these 
categorizations with caution. Additionally, including 
more variables in the imputation model could potentially 
yield better results. Researchers and policymakers must 
be aware of the potential biases and deviations that may 
arise from imputation, especially when dealing with a 
high proportion of missing data (over 70%). Furthermore, 
the performance of MICE in imputing a higher propor-
tion of missing data is influenced by other factors such as 
the type and pattern of missing data [46], the number of 
auxiliary variables, parameters such as number of impu-
tations and iterations and the extent of missingness in the 
auxiliary variables. Our study aims to offer a foundational 
understanding, with the current findings serving as a first 
step toward more extensive investigations. Therefore, the 
present study provides a preliminary guideline based on 
the findings from a specific study context. We caution 
the readers that these guidelines are not definitive; rather, 
they are intended to offer insight into the thresholds of 
missing data for MICE based on empirical evidence 
derived from our analysis.

Future studies should expand upon this research by 
applying imputation methods to national health datasets 
under various missingness mechanisms, including MAR, 
MCAR, and MNAR while addressing diverse missingness 
patterns such as univariate, monotone, intermittent, and 
mixed. Simulation studies are recommended to improve 
the evaluation accuracy of different imputation meth-
ods and validate their robustness. Additionally, since 
this study focuses on aggregated national health data, 
future research could offer valuable insights through 
country-specific analyses to better understand imputa-
tion performance across different contexts. Exploring 
the imputation error in cases of high missingness levels 
is also important, particularly by optimizing the MICE 
model parameters, such as increasing the number of 
imputations and iterations. Finally, future research should 
extend beyond MICE to compare a variety of imputation 
methods, including multilevel MICE, to determine the 
most effective approaches for addressing complex miss-
ingness patterns in longitudinal national health datasets.

Conclusion
The study offers preliminary guidelines for selecting 
the appropriate extent of missing data to impute using 
MICE, based on an evaluation of the MICE method’s 

performance in handling missing data for mortal-
ity health indicators. We found that MICE is effective 
for imputing missing values up to 50%, showing only 
marginal deviations from complete datasets. However, 
for missing proportions between 50 and 70%, moder-
ate alterations occur, and for proportions beyond 70%, 
significant shrinkage in variance and poor evalua-
tion metric performance compromise data reliability 
and accuracy. This study underscores the importance 
of understanding imputation limitations and biases, 
offering practical guidance for researchers and poli-
cymakers. Further research is needed to explore 
MICE’s performance in diverse contexts and improve 
its robustness for informed decision-making in public 
health.
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