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Abstract

Background Evidence indicating persistent geographic inequalities in health outcomes signifies a need for rou-
tine subnational monitoring of health-related Sustainable Development Goal targets in sub-Saharan Africa. Health
facilities may be an appropriate subnational unit for monitoring purposes, but a lack of suitable demographic data
complicates the production of baseline facility-level population denominators against which progress can be reliably
measured. This scoping review aimed to map the methods and data sources used to estimate health facility catch-
ment areas and translate them to population denominators for child health indicators in the region.

Methods Peer-reviewed research publications and grey literature reports were identified by searching bibliographic
databases and relevant organisational websites. The inclusion criteria required that studies were conducted in sub-
Saharan Africa since January 2000, described quantitative method(s) for estimating health facility catchment areas
and/or population denominators, and focussed on children as the population of interest. Following title/abstract then
full text screening of search results, relevant data were extracted using a standard form. Thematic analysis was under-
taken to extract themes and present a narrative synthesis.

Results Overall, 33 research publications and 3 grey literature reports were included. Of these, only 7 research studies
and 1 technical guidance document outlined aims explicitly framed around methods development and/or evalu-
ation. Studies increasingly estimated catchment areas using complex geostatistical or travel time-based modelling
approaches rather than simpler proximity metrics, and produced denominators by intersecting catchment bounda-
ries with gridded population surfaces rather than aggregating area-based administrative counts. Few studies used
data produced by or describing health facilities to link estimation methods to service utilisation patterns, inter-facility
competition or facility characteristics.

Conclusion There is a need for catchment population estimation methods that can be scaled to national-level
facility networks and replicated across the region. This could be achieved by leveraging routinely collected health
data and other readily available and nationally consistent data sources. Future methodological development
should emphasise modern geostatistical approaches drawing upon the relative strengths of multiple data sources
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and capturing the range of spatial, supply-side, individual-level and environmental factors with potential to influence

catchments’ extent, shape and demographic composition.

Keywords Health facility, Catchment area, Denominator, Population, Demography, Spatial, Child health, Sub-Saharan

Africa, Scoping review

Background

Projections from the 2017 Global Burden of Disease
study suggest that many countries of sub-Saharan Africa
(SSA) are falling short of the progress required to meet
any health-related Sustainable Development Goals
(SD@Gs) target by 2030 [1]. The region also faces chal-
lenges in relation to child health; despite recent improve-
ment, levels of mortality [2, 3] and infectious disease
incidence [4, 5] remain high, amid evidence of growing
non-communicable disease burden [6]. Subnational anal-
yses, however, reveal within-country inequalities in the
distribution of health outcomes [7-9] that would other-
wise be hidden by national-level data, signifying a need
for routine monitoring at more granular geographies. By
revealing and characterising high risk areas or under-
served populations such an approach could also help
to address spatial inequalities, contributing to targeted
resource allocation and the development of locally-rele-
vant interventions and services [1, 2, 7].

Health facilities (HFs) may be an appropriate subna-
tional unit for monitoring progress against targets in
SSA: they provide routine, formal care to populations
in small geographic areas and, in so doing, collect con-
tinuous and near real-time empirical data describing
service utilisation, health status, disease incidence and
prevalence, and intervention coverage [10, 11]. Intui-
tively, progress monitoring at this level presupposes clear
knowledge of the geographical ‘catchment’ area served
by each HF, together with its baseline denominator
population and demographic composition [12]. Though
traditionally viewed as the principal sources of demo-
graphic data in many low- and middle-income countries
(LMICs), censuses and household surveys do not provide
direct population estimates at the lowest levels of health
service delivery [13]. Moreover, as catchments are rarely
delineated by unambiguous administrative boundaries in
SSA, so-called ‘natural’ catchments predominate, tending
to emerge as a product of interacting factors influenc-
ing patient choice [14], including HF type [15], service
quality [16, 17] or distance decay (meaning the tendency
towards waning utilisation with greater travel distance)
[18, 19]. Without the benefit of typical demographic data
and methods, a range of statistical and geospatial model-
based approaches to the estimation of HF catchment
areas and population denominators have been devel-
oped, many of which account for these, and other, salient

factors [20], but seldom incorporate the data collected by
HFs themselves as the product of routine patient care.

Nonetheless, the view that routinely collected health
data (RCHD) could be better leveraged for population
health improvement has gained traction in recent years,
with renewed efforts to improve their quality [21, 22]
and establish them as a source of intelligence to moni-
tor health indicators and inform local, evidence-based
decision-making [23-25]. Meanwhile, District Health
Information Software (DHIS2), a health management
information system (HMIS) for the collection, warehous-
ing and reporting of RCHD, has been adopted by more
than 70 LMICs covering some 30% of the world’s popula-
tion, principally in SSA and south/south east Asia [26],
thus strengthening and harmonising their data collection
and production infrastructure. These developments are
emblematic of the rapidly evolving data landscape of SSA
and may have precipitated methodological innovation
that could be replicated more widely across the region.
This scoping review was conducted with the aims of
mapping the: (i) methods and data sources that have been
used to estimate HF catchment areas and translate them
to population denominators for child health indicators
in SSA; (ii) approaches used to evaluate these estimation
methods.

Methods

The review followed the methodological framework
established by Arksey and O’Malley [27], and is reported
in accordance with the Preferred Reporting Items for
Systematic reviews and Meta-Analyses Extension for
Scoping Reviews (PRISMA-ScR) checklist [28] (Supple-
mentary file 1). A protocol was also registered on Open
Science Framework [29].

Identifying and selecting peer-reviewed publications

Publications were identified using a search strategy devel-
oped by the study team and reviewed by two research
librarians. Database search strings (Supplementary file
2) consisted of MeSH terms (Medline only) and search
terms arranged into four broad ‘concepts’ (children, HFs,
catchment areas/population denominators and SSA)
using Boolean operators. Exploratory scoping searches
were used to determine the combination of terms
required to capture each ‘concept’. Searches of Medline,
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Scopus, Web of Science Core Collection, GeoBase and
African Index Medicus bibliographic databases were exe-
cuted on 25th October 2021. Results were imported into
an EndNote X9 (Clarivate Analytics, Philadelphia, USA)
database and de-duplicated.

Screening against the inclusion criteria (Table 1) was
conducted in two stages: (i) title/abstract screening of
de-duplicated search results using the R ‘metagear’ pack-
age [30]; (ii) full text screening of results passing the
first stage. Where publications were unavailable online,
the authors were contacted directly. Prior to each stage
a random sample of 20% were independently screened
by MJ and WAA to calibrate the inclusion criteria and
screening approach [28]. Discrepancies between review-
ers were discussed and, where necessary, resolved by
JW as arbitrator. Agreement was assessed using Cohen’s
kappa coefficient; once a minimum value of 0.80 was
achieved, all remaining publications were screened by M]
alone [31]. After completion, the list of full text screen-
ing decisions and rationale was verified by WAA and JW.
Reference lists were searched to identify additional publi-
cations meeting the inclusion criteria.

Grey literature

Recognising non-academic organisations’ role in the
production of methodological and technical guid-
ance, grey literature searches were executed during
January, February and June 2022. Google Scholar and
relevant organisational websites were searched using
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a simplified strategy consisting of keyword combina-
tions representing ‘concepts’ used to identify peer-
reviewed publications (Supplementary file 3). As grey
literature tends to appear more regularly after around
30 pages of Google Scholar search results [36], the first
50 pages (500 results) were screened by title/preview
only, as were the results from organisational websites.
EBSCO was searched as a general source of grey litera-
ture and ProQuest for dissertations and theses. Results
from peer-reviewed journals were excluded. Title/
abstract screening used the platforms’ web interfaces,
with results passing this stage progressing to full text
screening. Screening was conducted by MJ alone and,
other than relaxing the third criterion (Table 1) to allow
inclusion of methodological guidance not linked to spe-
cific countries, followed the approach used for peer-
reviewed publications.

Data extraction and synthesis

For consistency, a standard form was developed to extract
variables including bibliographic information, study set-
ting and population, data sources, software and methods
used, results, findings and limitations. Following inde-
pendent extraction from 15% of peer-reviewed publica-
tions by MJ and WAA as a calibration exercise [28], the
remainder were reviewed by MJ alone. After completion,
the extracted data were verified by WAA. R v4.0.2 and
RStudio v1.3.1073 (R Core Team, Vienna, Austria) were

Table 1 Inclusion criteria used to select peer-reviewed publications for the review

Criterion Description

Additional notes

1 Publication written in English or French languages
2 Publication dates from January 2000 onwards
3 Publication describes a study conducted in at least one country

from the United Nations SDG SSA regional grouping [33]

4 Publication describes a quantitative method(s) for estimating catch-

ment areas and/or population denominators

5 The method(s) associates catchment areas and/or population

denominators with specific health facilities as the unit of analysis
6 Children of any age are the/a specific population subgroup of inter-

est

- Database searches were conducted in English

- Selected as efforts to strengthen HMIS [21] and uptake of DHIS2 [32]
gathered pace during the 2000s

« Publications describing the development of a novel method

or implementation of an existing method were considered relevant,
but methods must involve estimation or modelling as opposed

to delineating or visualising empirically observed health-seeking
flows

- Publications describing the application of similar methods

as an intermediate step to testing associations between health
service accessibility and outcomes were also considered relevant

to the review

«'Specific'may mean the nearest or named health facilities

+ Many health-related SDG indicators are targeted to a demographic
subgroup as opposed to the total population [34]

« Several countries of SSA have expanded the set of child health
services covered by free healthcare policies in recent years which,
though the evidence is mixed, may have resulted in increased service
utilisation and consequential growth in the volume of routine data
[35]
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used to create quantitative tables summarising the cor-
pus of publications. Thematic analysis was undertaken to
extract key themes and present a narrative synthesis.

Results

A PRISMA flow diagram outlining the selection process
is presented in Fig. 1. Twenty-nine of 1087 unique peer-
reviewed publications were included, as well as 4 identi-
fied via reference list searches. Also included were 3 grey
literature reports, consisting of one case study [37], one
thesis [38] and one technical guidance document [39], of
which the latter is excluded from the forthcoming quanti-
tative tables and synthesis.

Study setting and health facility locations

Excepting 2 region-wide [40, 41] and 2 multi-country
studies [37, 42], most (88.6%) peer-reviewed publica-
tions and grey literature reports (hereafter, publications)
described single-country studies (Table 2). Overall,
15 countries were represented; while most had 3 pub-
lications or fewer, 13 (37.1%) originated from Kenya.
Although 7 (20.0%) publications implemented methods
across the national HF network [43-49], most (68.6%)

Identification of peer-reviewed publications

Records identified from database
searches: 2,287
(Medline — 749; Scopus — 959; Web
of Science — 498; GeoBase — 62;
African Index Medicus — 19)

Records excluded by
de-duplication: 1,200

Title/abstract screening: 1,087
(after exclusions applied)

Records excluded by screening
criteria: 1,010
(language - 0; date — 147;
country — 38; method — 768;

Records sought
health facilities — 12; children — 45)

for retrieval: 77

Full text screening: 77
(all records successfully retrieved)

Records excluded by screening
criteria: 48
(method — 37; health
facilities — 3; children — 8)
Additional records identified by
reference list searches: 4
(all records successfully retrieved)

Records included in the review: 36
Peer-reviewed publications: 33
Grey literature reports: 3

Records sought
for retrieval: 2

Full text screening: 1
(one full text could not be retrieved)
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analysed a defined subnational area or subset of spe-
cific, purposively selected HFs. Only 3 (8.6%) publica-
tions stated that analyses captured public and private
sector HFs [42, 46, 50] (Table 3). All studies utilised data
describing HF locations (Table 4). Although study staff
sometimes (14.3%) conducted onsite geolocation by field
survey [15, 42, 44, 51, 52], information held within the
national health system or by HFs were the most common
data source (60.0%). Recent years have seen the develop-
ment of open databases geolocating public sector HFs
across SSA [53, 54], and there were instances of their use
to augment within-country data [46], or as the primary
source for region-wide analyses [40, 41].

Study aims

While only 7 (20.0%) publications were framed around
methods development and/or evaluation (Table 4), 12
(34.3%) each utilised similar methods to estimate catch-
ment areas and/or population denominators, or to com-
pute measures of health service accessibility as covariate
to models testing associations with outcomes such as
stunting [55] or hospital admission [56]. Several differ-
ent health indicators were analysed (Table 3): indicators

Identification of grey literature reports

Records identified from database
searches: 1,970
(ProQuest — 44; EBSCO — 1,926)

Records identified from website
title/preview searches: 7

Records excluded before
screening: 1,894
(peer-reviewed journals — 1,890;
de-duplication — 4)

Title/abstract screening: 76
(after exclusions applied)

Records excluded by screening
criteria: 74
(language - 0; date - 9;
country — 1; method - 56;
health facilities — 1; children — 7)

Full text screen: 7
(all records successfully retrieved)

Records excluded by screening
criteria: 5
(from database searches —0;
from website searches —5)

One of the grey literature reports included in the review was a technical guidance document not linked to any specific country. This report is summarised
in detail in table 3 but is excluded from tables 2 and 4, which aggregate publications describing implementation of catchment and denominator estimation

methods

Fig. 1 PRISMA flow diagram outlining the process used to identify and select relevant publications and reports
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Table 2 Geographic area and scale of the included publications

Page 5 of 37

Area Regional

National

Number of
publications

Subnational® Single health

facility b

Sub-Saharan Africa region 2

Multi-country study

Burkina Faso

Democratic Republic of the Congo

Ghana

Kenya 1
Madagascar

Malawi 1
Mozambique 1
Namibia

Niger 1
Rwanda

Somaliland 1
South Africa 1
Tanzania

The Gambia

Uganda 1
Total (%) 2(5.7) 7(20.0)

1 1
1
2
23 (65.7)

[ R NG S G NG J N NG T NS

3(8.6) 35(100.0)

2 ‘Subnational’ denotes a defined subnational area or a subset of specific, purposively selected health facilities

b Table includes 33 peer-reviewed publications and 2 (of 3) grey literature reports (1 technical guidance document has been excluded)

related to malaria or fever treatment-seeking were used
for 15 (42.9%) publications, but 4 (11.4%) each analysed
child mortality, access to/utilisation of surgical services,
and immunisation coverage.

Catchment area estimation

Catchment boundaries were sometimes (17.1%) aligned
with those of established administrative units (Table 4),
usually selected following an algorithmic process
informed by patient-level data extracted from the HMIS
[37, 57-60]. To produce catchment areas independent
of administrative boundaries, many (31.4%) publications
described the use of GIS software to assign locations to
HFs based on straight-line distance [38, 47-52, 56, 61—
63]. In cases where the network of roads and/or footpaths
was also mapped, this was enhanced by measuring ‘net-
work’ distance [64—66]. Similarly, additional spatial data-
sets describing other topographic features, such as land
cover or slope, were often (31.4%) combined as input to
cost impedance models measuring the travel time ‘cost’
of health-seekers’ most efficient route between locations
[15, 19, 41-44, 46, 55, 67—69]. More complex approaches
integrated spatial data with that gathered from nation-
ally representative household surveys [18, 40, 70] or the
HMIS [71] in geostatistical models assembling catch-
ments based on location-specific estimates of health-
seeking probability. Most publications presented a map of

HF locations (65.7%) (Table 4) but, while those describing
methods development or catchment estimation typically
delineated their boundaries explicitly, others computing
an accessibility-based model covariate tended to produce
isochrones visualising travel time or distance strata.

Denominator estimation

Although not all publications (68.6%) translated catch-
ments to population denominators (Table 4), the meth-
ods for doing so were divided almost equally between
intersecting catchment boundaries with fine spatial-
scale gridded population surfaces (34.3%) and aggregat-
ing nationally- or locally-produced population counts
(31.4%) at the level of districts [37], enumeration areas
[38, 52], or villages [72], for example. Overall, 7 (20.0%)
publications reported denominators for individual HFs
and 6 (17.1%) at other levels of spatial aggregation.

Evaluation of methods

Most (60.0%) publications described methods evaluation
(Table 4), which commonly entailed sensitivity analyses
(28.6%) or comparing multiple methods within a single
analysis dataset (11.4%), but in the case of model-based
approaches used a validation subset to assess the perfor-
mance of candidate model specifications (8.6%). Only 4
(11.4%) described comparisons against independent [64,
70, 72] or purposively collected data [52].
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Table 4 Characteristics of the included publications

Characteristic Number (%) of

publications ?
(n=35)

Study aims/product

Methods development and/or evaluation 7 (20.0)
Estimation of catchment areas and/or population denominators 12(343)
Computation of distance- or travel time-based model covariate 12 (34.3)
Other study aim(s) 4(114)
Type of catchment estimation method or accessibility measure used

Alignment with administrative boundaries 6(17.1)
Straight-line distance 11(31.4)
Network distance 3(8.6)
Travel time/cost impedance modelling 11(31.4)
Model-based geostatistics 4(114)
Type of denominator estimation method used

Aggregation of administrative unit population counts 11(314)
Intersection of catchment boundaries with fine spatial-scale gridded population surface 12 (34.3)
Complete enumeration within Health and Demographic Surveillance System area 1.9
No denominator estimation 11(31.4)
Data types used in the estimation process

Purposive collection of origin/destination data 2(5.7)
Data collected by Health and Demographic Surveillance System 5(143)
Data extracted from Health Management Information System 7 (20.0)
Nationally representative household survey data 7 (20.0)
Spatial datasets, including road/footpath networks, land cover, topographic barriers to movement 22 (62.9)
Population counts by administrative unit 12 (34.3)
Fine spatial-scale gridded population surface 12 (34.3)
Source of data for health facility geolocation

Onsite geolocation by field survey 5(143)
Routine geolocation of all health facilities within Health and Demographic Surveillance System area 5(14.3)
Study conducted in single or small number of health facilities 9(25.7)
Data held by national health system 12 (34.3)
Regional database of geolocated public health facilities 2(5.7)
Other open data source 2(5.7)
Approach to evaluation of estimation methods

Comparison against independent or purposively collected data 4(11.4)
Direct comparison of multiple estimation methods using single analysis dataset 4(11.4)
Sensitivity analysis or other statistical comparisons using single analysis dataset 10 (28.6)
Evaluation of candidate model specifications using a validation subset 3(8.6)
No methods evaluation 14 (40.0)
Relevant estimation outputs presented

Map delineating health facility catchment areas and boundaries 13(37.1)
Isochrone map visualising health facility/service accessibility by travel time/distance strata 10 (28.6)
Distance decay curve for the health indicator of interest 10 (28.6)
Population denominators at level of individual health facilities 7 (20.0)
Population denominators at other level of spatial aggregation 6(17.1)

?Table includes 33 peer-reviewed publications and 2 (of 3) grey literature reports (1 technical guidance document has been excluded)
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Data sources and software

Although most publications utilised open, or widely
available, secondary data sources only (Table 4), sev-
eral accessed data linking service utilisation events with
health-seekers’ origin location, which are not routinely
available in this setting: 5 (14.3%) were conducted within
a Health and Demographic Surveillance System area
[61, 65, 66, 68, 69], 7 (20.0%) extracted patient-level data
from the HMIS [37, 57-60, 71, 72] and 2 (5.7%) surveyed
health-seekers attending local HFs [15, 51].

Over half were published from 2017 onwards (Table 3).
This may be linked to wider adoption of open-source
software: while Geographic Information System (GIS)
products such as ArcGIS and ArcView (Esri, Redlands,
USA) and the AccessMod extension [73] were most
common overall, use of R packages for spatial analysis
(including ‘geoR; ‘gstat’ and ‘R-INLA’) was evident from
2017 [19, 64, 71, 72].

Discussion

This review of the literature on HF catchment popula-
tion estimation for child health indicators in SSA found
that few of the 36 included publications took methods
development and/or evaluation as the primary focus. Of
these, 7 were subnational research studies [15, 38, 51,
52, 64, 71, 72] and the eighth was a technical guidance
document concerning single-hospital denominator esti-
mation [39]. Though data inequity has previously been
cited as a barrier [15], recent efforts to strengthen health
data infrastructure and ongoing advances in the availabil-
ity, coverage and resolution of spatial and demographic
data may now offer the opportunity for development of
reproducible methods that can be scaled to national-level
networks. This will be essential if the HF is to be taken
forward as a credible subnational unit for routine moni-
toring of health indicators.

A successful catchment estimation method should,
without need for empirical data tracing actual health-
seeking flows, be able to outline the geographic area from
which the users of a given HF are expected to originate
[20]. The most basic method aligns catchments with
established administrative units. This is problematic,
however, in that subnational administrative bounda-
ries do not usually impede population movement and
are thus unlikely to accurately represent health-seeking
flows. Most publications described methods under-
pinned by measures of spatial accessibility, which focus
upon the space or distance separating health-seekers
from services [74]. The chosen measure has implica-
tions for catchments’ extent, shape and configuration,
however. By conceptualising the catchment network as
a complete areal tessellation encapsulating the entire
population [38, 47, 49, 51, 52], the simplest straight-line

Page 31 of 37

distance methods carry the unrealistic assumption that
all health-seekers have access to one, and only one, HF.
Recognising that some may, in reality, reside beyond
practical reach of any HF, buffers were sometimes used
to constrain catchments to a distance threshold pro-
vided by policy targets [46, 52, 55], guidance around the
health indicator under consideration [41, 44, 50], or the
inflection point of a modelled decay curve [18, 19, 70].
As straight-line distance inherently overlooks transport
infrastructure and topographic barriers to movement,
additional spatial data may be used to produce a more
realistic measure [75]. Network distance may have lim-
ited utility in SSA, where pedestrian travel is common,
and not necessarily restricted to roads and footpaths [76].
Instead, the process of converting the study area to a grid
representation, assigning all cells a traversal ‘cost’ based
on their aggregate spatial characteristics, then fitting cost
impedance models to measure the travel time associated
with health-seekers” most efficient route to the nearest
HF is often preferred, despite increased data and compu-
tational needs [75]. Aligning catchment boundaries more
closely with topographical features that bar or facilitate
movement may better represent the real-world travel
experience in this setting, but is sensitive to the qual-
ity and resolution of spatial data. One publication noted
that the coarse resolution required to handle the regional
inconsistency of road network and other spatial data may
have overestimated accessibility in rural areas or near
major roads [41]. Distance measures or cost impedance
models were sometimes integrated within a broader geo-
statistical modelling framework alongside other supply-
side or individual-level factors, such that catchments
were defined by the combined effect of multiple covari-
ates on location-specific probability of health-seeking
and service utilisation [70, 71]. Overall, the included pub-
lications depicted a trade-off between catchment estima-
tion methods that are comparatively easy to implement,
but oversimplistic and likely to yield unrealistic denomi-
nators, and others that more accurately represent real-
ity but entail additional data needs and methodological
complexity (Fig. 2).

Increasingly complex modelling approaches present
the further challenge that the optimal specification and
appropriateness of any assumptions are likely context-
specific [75, 77], underlining the need for evaluation.
While cost impedance modelling facilitated comparison
of alternate travel scenarios based on variable transport
modes [44, 69] or seasonal conditions [43, 78] as a means
of sensitivity analysis, geostatistical approaches further
allowed for the performance of candidate model speci-
fications to be compared using a validation dataset [19,
40, 71]. Nonetheless, empirical ‘origin/destination’ data
specifying health-seekers’ origin location and the HF
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Inputs

LeESt Health facility locations
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Estimation method Catchment configuration

Administrative boundaries

Alignment with established
administrative unit(s)

Polygons aligned to the geographic extent of selected
subnational administrative unit(s)

Health facility locations

Health facility locations

Series of geometrically regular polygons assigning all
»| locations to the nearest health facility and encapsulating
the area of interest (complete areal tessellation)

Straight-line distance:
Thiessen polygons

Distance threshold (radius)

Health facility locations
Distance threshold

Series of circular polygons of defined radius, each
»| centred on one health facility. Some locations are not
situated within any catchment

Straight-line distance:
buffers

Road/footpath networks

Data needs

Health facility locations
Distance/travel time threshold
Road/footpath networks

Series of polygons, each centred on one health facility,
that are not geometrically regular but roughly

"] approximate circles of defined radius. Some locations are

not situated within any catchment

Network distance

Methodological complexity

Land cover/surface water
Locations of impassable areas (nature reserves, etc.)
Digital elevation/slope
Motorised/pedestrian travel speed assumptions

Health facility locations
Distance/travel time measure (defined using above methods)
Service utilisation rates (from household survey, HMIS, etc.)

.| Travel time/cost impedance

Series of irregular polygons enclosing individual health
facilities, typically limited to a defined travel time
threshold. Some locations are not situated within any
catchment

modelling

Series of irregular polygons defined according to the
probability that a given health facility will be used by the

and/or
Characteristics of health-seekers (from household survey, HMIS, etc.)
and/or
Characteristics of health facilities

V

Most

A4

population at each location within the study area.

o| Probability calculation uses distance decay together with
supply-side and/or individual-level determinants of

health-seeking. Some locations are not situated within

Model-based geostatistics

any catchment, while others may be situated within
multiple catchments

Fig. 2 Outline of the catchment estimation methods identified by the review, together with their associated inputs and outputs

attended, though scarce in SSA, expose actual health-
seeking flows and should be seen as the ‘gold standard’
for evaluation. Where available, these data provided new,
otherwise unattainable insight: two related studies col-
lecting origin/destination data via onsite surveys showed
that travel beyond the nearest HF was common [15, 51].
Catchment boundaries bisecting the space between adja-
cent HFs typify straight-line distance methods, but the
finding that a substantial proportion of health-seekers
attended a more distant, but higher-tier, HF (hospitals
rather than health centres, for example) suggests that
inter-facility competition or other HF characteristics
may also influence health-seeking and, as such, have a
role in appropriate boundary placement. Indeed, while
accessibility measures, in isolation, implicitly assume
that all health-seekers attend, and can be served by, the
nearest HF, methods adjusting for facilities’ capacity [55]
or capabilities in respect of specific conditions [42], or
health-seekers’ individual-level characteristics [19, 70],
for example, may produce more realistic results. Though
simpler methods based on spatial accessibility have argu-
ably been necessary in the absence of data specifying
health-seekers’ origin location or capturing the range of
aspatial supply-side and individual-level factors known
to influence patient choice [20], recent advances may
now permit the use of more comprehensive, yet scalable,
methods leveraging multiple data sources with national
coverage.

Directly linking estimation methods to RCHD could
help to narrow the gap between modelling and reality.
Two publications [37, 57] followed disease-specific tech-
nical guidance issued by the World Health Organisation
[39, 79], which proposed algorithmic case detection and
geolocation from retrospective hospital records then
catchment delineation at the geographic extent of rank-
ordered administrative units contributing a cumulative
80—-85% of cases. Though a relatively simple and intuitive
algorithm, replication is limited by the burden of manual
retrieval and review of physical records, which were often
difficult to locate, incomplete or illegible [57]. Instead,
clinical surveillance databases appear a more practicable
foundation for algorithm development [60] or amalga-
mation of RCHD from multiple HFs [71, 72]. Although
the included publications described local, purpose-built
databases, they lend credence to the notion that HMIS,
bolstered by recent strengthening initiatives, may be a
viable platform for scalable estimation methods. Indeed,
DHIS2 has been instrumental to the development of a
novel approach to district-level denominator and inter-
vention coverage estimation [80], subsequently replicated
elsewhere in SSA [81, 82]. Having thus far been applied
in established administrative units only, this method
did not meet the review inclusion criteria but may have
potential at more granular geographies such as HF catch-
ments. Perhaps reflecting the long-standing prominence
of malaria within the international health agenda [83],
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Inputs

Estimation approach
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Methods

Where catchments are aligned to the geographic extent of
subnational administrative unit(s), aggregation of the

Administrative boundaries
National census/other local enumeration data
Growth rate projections (and/or other population dynamics)

_| Aggregation of national/local
population counts

populations associated with all units

A4

Otherwise, aggregation of the populations associated with

administrative unit(s) whose centroids lay within the catchment
(point-in-polygon method)

Gridded population estimates disaggregated by age/sex and
produced at varying spatial scales (100m? the lowest available
resolution)

Aggregation of fine spatial-
scale population estimates

Intersection of catchment boundaries with the gridded
population surface, then aggregation of the populations
associated with all grid cells contained within the catchment

A4

Fig. 3 Outline of the inputs and methods for denominator estimation identified by the review

nearly half of the included publications focussed on
related indicators, with other pressing concerns such as
lower respiratory infections and diarrhoeal disease [84,
85] comparatively underrepresented. The breadth of
RCHD could address this imbalance by enabling parallel,
indicator-specific estimation using a common methodo-
logical approach, a valuable innovation given the pro-
pensity for health-seeking and distance decay to vary by
type or severity of health event [61, 86]. Realising these
aspirations will depend on consistent, complete and
high-quality data throughout the health system, however,
a concern that has historically led to structural underu-
tilisation of RCHD in SSA [87]. Although embedding
standard data entry procedures and automated quality
assessment tools within electronic HMIS may alleviate
some quality issues, continued efforts to strengthen the
manual, paper-based data capture processes and tools
used by health workers should remain a priority [21,
24]. Few studies captured both public and private HFs,
which has rarely been possible in SSA owing to subop-
timal reporting by the private sector [88, 89]. There is a
need for additional policy measures targeted to eliminat-
ing this gap so that the entire HF network can be factored
into routine monitoring and decision-making processes.
Imprecision was evident in translating catchment areas
to population denominators. Most publications followed
one of two broad approaches (Fig. 3). The first, applied
where catchments were aligned with established admin-
istrative units, estimated denominators by aggregating
nationally- or locally-produced population counts. These
counts were typically projected using objective growth
rates, and, in one case, were ‘downweighted’ in line with
distance decay [72]. Recent advances in the production of
spatially disaggregated demographic data have enabled
an alternate, GIS-based approach intersecting catch-
ment boundaries with fine spatial-scale gridded popula-
tion surfaces. Though this may improve the precision of
denominators associated with non-standard administra-
tive/spatial units, such as catchments [13], the gains may

be attenuated if small-area population demographics are
unknown, necessitating subgroup approximation as a
proportion of the total cell count [47]. Similar advances
in temporal granularity are also needed; reliance on
temporally coarse data, such as the decennial census,
has meant that catchment denominators are effectively
treated as static counts despite fluctuating in response to
short-term population movement [90], individual travel
behaviours [91], seasonal conditions [43, 78] and disease
epidemiology [57]. Aggregated mobile phone call records
have shown promise for tracking spatio-temporal popu-
lation dynamics [90-92] and could contextualise longitu-
dinal service utilisation patterns discerned from RCHD,
speaking to the potential of hybrid methods drawing
upon multiple data sources. Further methodological
enhancement would be needed, however, to address the
selection biases associated with HF utilisation [87] and
mobile phone ownership [93].

Having taken HF catchment areas as the spatial unit of
interest, this review has a distinct focus to much of the
research literature on small-area and subnational popu-
lation estimation and contributes to the fields of public
health and spatial demography. The breadth of the review
was a strength, having employed a search strategy bridg-
ing geospatial, epidemiological and demographic meth-
ods for the estimation of HF catchment populations, and
gathering peer-reviewed and grey literature from several
sources. It is acknowledged, however, that relevant pub-
lications utilising such methods may have been omitted
if substantive methodological content was absent from
titles or abstracts. Moreover, by limiting the review to the
health sector methods unique to education, or other pub-
lic services [20], may have been excluded.

Conclusion

This review found that most studies implemented esti-
mation methods using data from a single or subset of
HFs only. Such methods are unlikely to be generalis-
able if benefitting from well-developed and robust data
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infrastructure unrepresentative of the wider health
system, underlining the need for investment in meth-
ods that can be scaled to national-level HF networks.
Whilst considerable methodological variation was
observed, standardised and scalable methods could
be achieved by leveraging data sources that are read-
ily available at national scale, such as RCHD, nation-
ally representative household surveys and spatially
disaggregated demographic data. Many publications
focussed on indicators related to malaria, but RCHD
could also help to fulfil the need for population denom-
inators in respect of other heath conditions. Although
quality concerns have historically resulted in underu-
tilisation of RCHD in SSA, emphasising their value
for catchment population estimation could accelerate
quality improvement initiatives and efforts to improve
private sector reporting rates. Future methodological
development should move away from using accessibility
measures in isolation towards geostatistical approaches
uniting spatial characteristics of health service supply
with the broader range of supply-side, individual-level
and environmental factors that may exert an influ-
ence on health-seekers’ choice behaviour. In particular,
explicitly accounting for inter-facility competition in
catchment estimation could help to overcome the com-
monplace, but likely invalid, assumption of attendance
to the nearest facility. Future research should also con-
sider the potential of adapting innovative approaches
utilised in other sectors, disciplines or high-income
countries for HF catchment population estimation in
SSA.
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